
Research Group
BYTE IN DESING

Algorithms Design

Sc
h

oo
l o

f B
as

ic
 S

ci
en

ce
s,

 T
ec

h
n

ol
og

y,
 a

n
d

 E
n

g
in

ee
ri

n
g

Algorithms Design

Author: Anivar Chaves Torres

Research Group: Byte in design

Sello Editorial

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA - UNAD

Jaime Alberto Leal Afanador
Chancellor

Constanza Abadía García
Vice-Chancellor for Academic and Research

Leonardo Yunda Perlaza
Vice-Chancellor for Educational Media and Learning Mediation

Edgar Guillermo Rodríguez Díaz
Vice-Chancellor for Applicants, Students, and Alumni Services

Leonardo Evemeleth Sánchez Torres
Vice-Chancellor for Interinstitutional and International Relations

Julialba Ángel Osorio
Vice-Chancellor for Social Inclusion, Regional Development, and Community
Outreach

Claudio Camilo González Clavijo
Dean, School of Basic Sciences, Technology, and Engineering

Juan Sebastián Chiriví Salomón
National Director, Research Management System (RMS)

Martín Gómez Orduz
Director, UNAD University Press

Algorithms Design
Author: Anívar Chaves Torres

e-ISBN: 978-628-7786-14-1

Research Group: Byte in Design

School of Basic Sciences, Technology and Engineering

©Publisher
UNAD University Press
Universidad Nacional Abierta y a Distancia
Calle 14 sur No. 14-23
Bogotá D.C.

November 2024

Layout: Hipertexto - Netizen

How to cite this book: Chaves Torres A., (2025). Algorithms Design. UNAD University Press.
https://doi.org/10.22490/UNAD.9786287786141.

This work is licensed under a Creative Commons Attribution-NonCommercial-No-Derivatives
4.0 International License. https://co.creativecommons.org/?page_id=13.

Chaves Torres, Anívar

Learn to design algorithms / Anívar Chaves Torres - [1.a. ed.]. Bogotá: UNAD Publi-
shing House/2024. (School of Basic Sciences, Technology and Engineering -ECBTI in
Spanish-)

e-ISBN: 978-628-7786-14-1

1. Algorithms – teaching 2. Computer 3. Programming I. Chaves Torres, Anívar

005.1

D852

2

Algorithms Design is a didactic book aimed at those be-
ginning their journey into computer programming.

This book covers the key topics required to design and
implement solutions using computer programs, starting
from basic concepts such as data types and variables to
advanced topics like recursion.

Each topic is accompanied by numerous examples and
exercises, allowing students to practice and thus better
understand the theory well and apply it in their algori-
thm design.

Furthermore, the book explains diff erent ways to repre-
sent an algorithm, either descriptively through pseu-
docode or graphically through flowcharts or Chapin
diagrams. Examples are presented using the three me-
thods to familiarize students with them. Additionally,
the book discusses methods for verifying algorithms to
assess their functionality and correct them if necessary.

The author is a professional who has dedicated most
of his career to university teaching and research. His
main areas of interest and research include teaching
computer programming, databases, and education.
To date, he has published six books and numerous ar-
ticles, some co-authored with researchers from diff e-
rent universities.

Anívar Chaves Torres is a Systems Engineer, holds a
master’s degree in Education, and a Ph.D. in Education
Sciences. He serves as a professor at Universidad Nacio-
nal Abierta y a Distancia (UNAD) in the School of Basic
Sciences, Technology, and Engineering. He is a member
of the Byte in Design research group.

 Bo
oK

 R
eV

ie
W

 AU
tH

oR

Bi
oG

Ra
PH

Y

Dedication

To my loving family
for their understanding,

support, and
trust.

4

CONTENT
PROLOGUE 8

1. INTRODUCTION 10

1.1 THE COMPUTER 10
1.1.1 Physical Component 12
1.1.2 Logical Component 16

1.2 PROGRAM CONSTRUCTION 18
1.2.1 Problem Analysis 19
1.2.2 Solution Design 20
1.2.3 Program Coding 21
1.2.4 Testing and Debugging 22
1.2.5 Documentation 22
1.2.6 Maintenance 24

2. PROGRAMMING ELEMENTS 25
2.1 DATA TYPES 25

2.1.1 Numeric Data 26
2.1.2 Alphanumeric Data 27
2.1.3 Logical or Boolean Data 28

2.2. VARIABLES AND CONSTANTS 28
2.2.1 Variables 28
2.2.2 Types of Variables 30
2.2.3 Variable Declaration 32
2.2.4 Value Assignment 33
2.2.5 Constants 34

2.3 OPERATORS AND EXPRESSIONS 34
2.3.1 Arithmetic Operators and Expressions 35
2.3.2 Relational Operators and Expressions 37
2.3.3 Logical Operators and Expressions 38
2.3.4 General Hierarchy of Operators 39

3. ALGORITHMS 41
3.1 CONCEPT OF ALGORITHM 41
3.2 CHARACTERISTICS OF AN ALGORITHM 42
3.3 NOTATIONS FOR ALGORITHMS 44

3.3.1 Textual Description 45

5

3.3.2 Pseudocode 46
3.3.3 Flowchart 47
3.3.4 Nassi-Shneiderman Diagram 50
3.3.5 Functional Notation 54

3.4 STRATEGY FOR DESIGNING ALGORITHMS 55
3.5 VERIFICATION OF ALGORITHMS 59

4. PROGRAMMING STRUCTURES 61
4.1 SEQUENTIAL STRUCTURES 61

4.1.1 Assignment 61
4.1.2 Data Input 62
4.1.3 Data Output 63
4.1.4 Examples with Sequential Structures 65
4.1.5 Proposed Exercises 77

4.2 DECISION STRUCTURES 79
4.2.1 Condition 80
4.2.2 Types of Decisions 81
4.2.3 IF Structure 82
4.2.4 SWITCH Structure 89
4.2.5 Nested Decisions 95
4.2.6 More Examples of Decisions 103
4.2.7 Proposed Exercises 130

4.3 ITERATION STRUCTURES 133
4.3.1 Controlling Iterations 133
4.3.2 WHILE Structure 134
4.3.3 DO WHILE Structure 142
4.3.4 FOR Structure 150
4.3.5 Nested Iterative Structures 158
4.3.6 More Examples of Iteration 164

4.4 Proposed Exercises 185

5. ARRAYS 189
5.1 CONCEPT OF AN ARRAY 190
5.2 TYPES OF ARRAYS 191
5.3 HANDLING VECTORS 192

5.3.1 Declaration 193
5.3.2 Accessing Elements 193
5.3.3 Traversing a Vector 194

5.4 HANDLING MATRICES 199

6

Algorithms Design

5.4.1 Declaration 199
5.4.2 Access to Elements 200
5.4.3 Traversing of an Array 200

5.5 MORE EXAMPLES WITH ARRAYS 203
5.6 PROPOSED EXERCISES 216

6. SUBPROGRAMS 219
6.1 FUNCTIONS 220

6.1.1 Designing a Function 221
6.1.2 Calling a Function 225
6.1.3 More Examples of Functions 227
6.1.4 Proposed Exercises 237

6.2 PROCEDURES 238

7. SEARCH AND SORTING 243
7.1 SEARCH ALGORITHMS 243

7.1.1 Linear Search 243
7.1.2 Examples of Linear Search 245
7.1.3 Binary Search 247
7.1.4 Binary Search Examples 250
7.1.5 Proposed Exercises 252

7.2 SORTING ALGORITHMS 253
7.2.1 Swap Algorithm 254
7.2.2 Selection Sort Algorithm 256
7.2.3 Bubble Sort Algorithm 258
7.2.4 Insertion Sort Algorithm 260
7.2.5 Donald Shell’s Algorithm 262
7.2.6 Quick Sort Algorithm 266
7.2.7 Merging of Sorted Vectors 267
7.2.8 Other Sorting Algorithms 269
7.2.9 A Complete Example 269
7.2.10 Proposed Exercises 281

8. RECURSION 283
8.1 RECURSION AND ALGORITHM DESIGN 284
8.2 STRUCTURE OF A RECURSIVE FUNCTION 285
8.3 EXECUTION OF RECURSIVE FUNCTIONS 287
8.4 WRAPPERS FOR RECURSIVE FUNCTIONS 290
8.5 TYPES OF RECURSION 291

7

8.6 EFFICIENCY OF RECURSION 291
8.7 EXAMPLES OF RECURSIVE SOLUTIONS 292
8.8 PROPOSED EXERCISES 301

9. THE RUBIK’S CUBE 303
9.1 DESCRIPTION OF THE CUBE 303
9.2 ALGORITHMIC SOLUTION 305

9.2.1 Preliminary Considerations 305
9.2.2 Main Algorithm for Solving the Rubik’s Cube 307
9.2.3 Selecting and Positioning a Reference Center 308
9.2.4 Solving the Upper Layer 308
9.2.5 Solving the Central Layer 314
9.2.6 Solving the Down Layer 318

LIST OF FIGURES 327
LIST OF TABLES 331
LIST OF EXAMPLES 335

8

This is a book conceived and developed by a program-
ming teacher, who also considers himself a lifelong stu-
dent of the subject. As such, he is well aware of the diff icul-
ties students experience in learning the fundamentals of
programming and algorithm design, as well as the needs
of teachers for reference material that includes concepts,
examples, and exercises.

While the topics covered are common in the books of pro-
gramming fundamentals, they are presented here with a
didactic approach, using a simple language and a level of
detail that anyone can understand. This book is not inten-
ded to be just a reference document but a didactic material
for independent learning.

To facilitate the learning of algorithm design, an inductive
approach is proposed. An algorithm is a general solution
for problems of the same type, and its steps are identified
as several cases of the problem are solved. The examples
presented in the chapters will apply this methodology:
hypothetical values will first be proposed for the problem
data and calculations will be carried out to arrive at a solu-
tion; then, variables will be defined and expressions will be
established to solve the problem for any set of values.

The book is organized into nine chapters. The first chapter
introduces the topic by studying the general aspects of a
computer–both physically and logically–as well as the sof-
tware construction process. It aims to provide students with
a perspective for the study of the following seven chapters.

Chapter two covers some fundamental concepts in pro-
gramming, such as data types, variables and constants, ope-
rators, and expressions. It is essential for students to have a
clear understanding of these concepts before delving into
algorithm design, as they will be applied in each of the fo-
llowing topics.

Chapter three directly addresses algorithms: concepts,
characteristics, notations, design strategies, and verifica-

 PR
oL

oG
Ue

9

tion. Its purpose is to provide conceptual support, as both students and professors need
to agree on what an algorithm constitutes, how it should be represented to avoid ambi-
guity in problem-solving, and how to verify its effectiveness.

Chapter four covers the three types of programming structures: sequential, selective, and
iterative. This chapter marks the real beginning of algorithm design, as the previous chap-
ters establish the framework for understanding and applying the structures. It shows how
to read data, process it, present results, make decisions, and execute certain operations
or processes repeatedly.

Chapter five studies one of the most relevant topics in programming: handling and or-
ganizing data in main memory through arrays. These storage structures are easy to use
and very useful for designing algorithms that operate on datasets. This chapter details all
the operations performed when working with vectors, except for searching and sorting,
which are covered in a separate chapter.

Chapter six explains the divide-and-conquer strategy applied to algorithm design.
This strategy consists of breaking a problem down into smaller, more manageable
subproblems, for which functions or procedures are designed and invoked from a
main algorithm.

Chapter seven covers searching and sorting—vital topics when working with large volu-
mes of data. Algorithms such as linear and binary search, exchange sort, insertion sort,
selection sort, bubble sort, and partitioning are explained in detail.

Chapter eight focuses on recursion. This topic is included because many programming
problems are easier to solve using recursion, and many of the algorithms that students
need to learn are recursive, such as quicksort and algorithms for handling dynamic data
structures. From this perspective, it is important for students to be familiar with recursion
from their earliest courses.

In the final chapter, chapter nine, an algorithmic solution for the Rubik’s Cube or magic
cube is presented. This puzzle is included based on two hypotheses: first, it is very di-
fficult to solve the cube without knowing the sequences of moves, as each attempt to
arrange one piece can disarrange another. Second, it is easier to understand and assi-
milate a topic or concept when there is something fun to apply it to. The algorithm for
solving the cube puts into practice the topics covered from chapters two through eight.
Additionally, while attempting to solve the cube, two essential qualities for learning any
subject, especially algorithms, such as willpower and perseverance, are exercised.

10

 INTRODUCTION

“Quit thy childhood,
my friend, and wake up”

Rousseau

Writing a computer program is a complex activity that
requires knowledge, skills, creativity, and mastery of
programming techniques and tools. Before writing a
program, it is necessary to carefully consider the na-
ture and characteristics of the problem to be solved,
determine how each required operation will be execu-
ted, and organize the activities needed to achieve the
expected results. Only when the solution design is com-
plete should a computer and programming language be
used to write the program’s code.

This book aims to facilitate the learning of concepts
and techniques to analyze problems and design so-
lutions as a preliminary step to writing programs.
Although programming is not addressed under any
specific language, it provides a general description of
computer architecture and the program construction
process to provide the reader with a perspective that
facilitates the understanding of the topics developed
in the following chapters.

 1.1 THE COMPUTER
A computer is an electronic machine designed for data
management and processing, capable of performing
complex operations at high speed, following a predeter-
mined set of instructions.

Deitel and Deitel (2004: 4) define it as ”a device capable
of performing calculations and making logical decisions
at speeds up to billions of times faster than humans can

11

achieve” [quote translated from its original in Spanish], processing data under the
control of a series of instructions called computer programs.

Lopezcano (1998: 83) defines it as a “machine capable of following instructions to
alter information in a desirable way” [quote translated from its original in Spanish]
and to perform some tasks without user intervention.

Based on Martínez and Olvera (2000), a computer is characterized by the following
functions:

• Performing arithmetic and logical operations at high speed and reliably.
• Comparing data and executing different actions depending on the result of the

comparison, with great speed.
• Storing both data and instructions in memory and processing the data accor-

ding to the instructions.
• Sequentially executing a set of instructions stored in memory (program) to ca-

rry out data processing.
• Transferring the results of operations to output devices such as screens and

printers or to secondary storage devices for user access.
• Receiving programs and data from peripheral devices such as keyboards,

mice, or some sensors.

It is a general-purpose tool that can be used in different areas, such as administra-
tive systems, process control, control of specific devices, computer-aided design,
simulation, scientific calculations, communications, and security systems (Martínez
& Olvera, 2000). It can handle data in different formats, including numbers, text, ima-
ges, sound, and video.

Initially, computers were used for activities requiring complex calculations or hand-
ling large volumes of information, such as in government offices and universities.
Over the years, their use became widespread as the number of computers manufac-
tured increased and their cost decreased. The use of this tool is growing, as no one
wants to give up its benefits in terms of comfort, speed, and accuracy for any type
of task. In addition, the market now offers a greater number of physical and logical
accessories that are applied to a wider range of activities.

From a systems approach, the computer is more than a set of devices; what makes
it a very useful tool is the relationship and interaction between its components, re-
gulated by a set of instructions and data that constitute its guidelines.

12

ALGORITHMS DESIGN

Superficially seen, a system requires an input or raw material, on which to execu-
te a process or transformation to generate a diff erent product that constitutes the
output. The computer can be considered a system in that the input data undergo
some type of transformation (processing) to generate new data that off ers better
utility to the user, where such utility is the system’s objective.

Unlike any other type of system, the computer has storage capacity, allowing it to
perform multiple processes on the same set of data and, also, to off er the results of
the process in various formats and as many times as necessary.

The computer has two types of components: physical components such as cards,
disks, and integrated circuits; and logical components: programs and data (Figure
1). The physical part is called hardware, while the logical part is called soft ware.

 Figure 1. Composition of the Computer

 1.1.1 Physical Component
This component, commonly known by its English name: hardware, is made up of
all the tangible devices and accessories that can be seen at a glance, such as cards,
integrated circuits, disk drives, CD-ROM drives, monitors, printers, keyboards, mice,
and speakers (Plasencia, 2008).

13

INTRODUCTION

Hardware elements are classified according to the function they perform, which can
be: data input, processing, output, or storage (Figure 2).

 Figure 2. Physical Organization of the Computer

Input devices. Input devices receive instructions and data entered by the user and
transmit them to the main memory from where the processor will access them.

The most commonly used input devices are the keyboard and mouse, followed by
other less common ones such as scanners, microphones, and cameras.

 The information entered through these means is transformed into electrical signals
that are stored in the main memory, where it remains available to be processed or
stored in permanent storage media.

Central Processing Unit. Commonly referred to as the CPU (Central Processing Unit).
This is the most important part of the computer, as it is responsible for making cal-
culations and comparisons. In the words of Becerra (1998: 1), “the processor is the
one that performs the sequence of operations specified by the program” [quote
translated from its original in Spanish].

This component searches for control instructions stored in memory, decodes, in-
terprets, and executes them. It manipulates temporary storage and data retrieval,

14

Algorithms Design

while regulating information exchange with the outside world through input and
output ports. (Lopezcano, 1998).

The central processing unit has three important parts: the control unit, the arithme-
tic-logical unit, and memory registers. In addition to registers (small memory spa-
ces), the processor needs constant interaction with the main memory.

The control unit is responsible for managing all the work done by the processor; in
other words, it could be said that it controls the entire operation of the computer.
The functions of this unit include:

• Reading the program instructions from memory
• Interpreting every instruction read
• Reading the data referenced by each instruction from memory
• Executing each instruction
• Storing the result of each instruction

The arithmetic-logical unit (ALU) conducts a series of arithmetic and logical opera-
tions on one or two operands. The data on which this unit operates are stored in a
set of registers or come directly from the main memory. The results of each opera-
tion are also stored in registers or in main memory (Carretero et al, 2001).

Registers are small memory spaces to store the data that is being processed. The
main feature of registers is the speed with which the processor can access them.

The operations conducted by the ALU and the data on which they act are supervi-
sed by the control unit.

Main memory. Physically, it is a set of integrated circuits attached to a small card
placed in the slot of the computer’s motherboard. Functionally, the memory is the
space where the processor stores the instructions of the program to be executed
and the data to be processed.

Memory plays an important role together with the processor, since it minimizes the
time required for any task; therefore, the more memory the computer has, the bet-
ter its performance will be.

When using the term memory, it refers to RAM (random-access memory). Howe-
ver, there are other types of memory, such as cache memory and virtual memory,
among other classifications.

15

Introduction

RAM, or Random-Access Memory, has the advantage of fast access but the disad-
vantage that data is stored only temporarily. When the power supply is interrupted
any reason, the data in the memory will be lost. Due to its high access speed, the
more data and programs that can be loaded into memory, the faster the computer
will work.

The different components of the computational unit communicate using bits. A bit
is a digit in the binary system that can take one of two values: 0 or 1. Bits constitu-
te the minimum unit of information for the computer. However, the most common
term for referring to a device’s memory capacity is the Byte. A byte is a collection of
eight bits and can represent up to 256 characters, whether they are letters, digits,
symbols, or codes known as non-printable characters, any character of the ASCII
(American Standard Code for Information Interchange) system.

Since a byte (a character) is a very small unit to express the amount of information
handled in a computer or in any of its storage devices, multiples of it are used, as
shown in Table 1.

Table 1. Storage Magnitudes

Unit Short Name Storage Capacity
Bit B 0 or 1
Byte B 8 bits
Kilobyte Kb 1024 Bytes
Megabyte MB 1024 Kb
Gigabyte GB 1024 Mb
Terabyte Tb 1024 Gb

Storage devices or secondary memory. Also known as auxiliary memory, it is res-
ponsible for securely storing information, as it keeps data permanently and inde-
pendently of whether the computer is running. On the contrary, the internal me-
mory only retains information while the device is turned on. Secondary storage
devices include hard drives, compact discs (CDs), digital versatile discs (DVDs), and
memory chips.

Output devices. They present the results of data processing. They are the means by
which the computer presents information to the user. The most common are the
monitor, the printer, and the speakers.

16

Algorithms Design

Screen or monitor: It displays images generated according to the program or pro-
cess being executed. They can be videos, graphics, photographs, or text. It is the de-
fault output, where the messages generated by the computer are presented, such
as data requests, process results, and error messages.

Printer: This device prints information sent from a program on paper. Printing can
be in black or color depending on the type of printer used.

Speakers: These devices amplify the audio signal generated by the computer.
They are now commonly used due to the multimedia processing capacity of com-
puting devices.

1.1.2 Logical Component

This component, commonly known as software, is made up of all the information,
whether instructions or data, that makes the computer work. Without the help of
software, the hardware does not perform any function.

Software is classified into four groups, depending on the task it performs: system
software, application programs, development software, and user files, as shown in
Figure 3.

System Software. Also known as an operating system, this is a set of programs es-
sential for the computer to work. They manage all the resources of the computing
unit and facilitate communication with the user.

Carretero et al. (2001) suggest imagining a computer stripped of software, incapa-
ble of performing any tasks. Even if a computer is equipped with the best hardwa-
re available, without program instructions in memory telling it what to do, it does
nothing.

The operating system aims to simplify the use of the computer and the management
of its resources, both physical and logical, in a secure and efficient way. Among its
functions, three stand out:

• Management of the computing unit resources
• Executing services requested by programs
• Executing user-invoked commands

17

INTRODUCTION

To fulfill these functions, the operating system has specialized programs for various
tasks, such as powering on the equipment, interpreting commands, managing input
and output of information through peripherals, accessing disks, processing inte-
rrupts, and managing memory and the processor.

Some well-known operating systems include: Windows, with its diff erent versions;
Linux, with its many distributions; Netware; Unix, Solaris, among others.

Application programs. A set of programs other than system soft ware. They mani-
pulate the information that the user needs to process and carry out a specific task.
Their purpose is to allow the user to carry out their work easily, quicky, eff iciently,
and accurately. This category includes several groups, such as word processors,
spreadsheets, graphing tools, databases, planners, accounting programs, mathe-
matical applications, audio and video editors and players, among others. Some
examples are: Word, Excel, Access, Corel Draw, and statistical soft ware such as SPSS
and accounting soft ware such as GC 1.

Figure 3. Soft ware Classification

18

Algorithms Design

Development software. This category is made up of a broad range of tools for sof-
tware development, including compilers, interpreters, integrated development en-
vironments, frameworks, and Application Programming Interfaces (APIs).

Most of these tools are designed to work with a certain programming langua-
ge; however, there are some applications that allow the use of code from more
than one language. For example, the Java platform with its JNI package and
the .Net platform.

User files. This category is made up of all the files created by the user using appli-
cation programs. They are generally not executable programs but rather files con-
taining entered data or the results of processing that data. Examples of user files
include images such as photographs or drawings, texts such as letters or reports,
database files, and spreadsheet files such as payroll or inventory.

1.2 PROGRAM CONSTRUCTION

A few decades ago, preparing computer programs was considered attractive, espe-
cially because it was rewarding not only economically and scientifically, but also as
an aesthetic experience such as the composition of poetry or music (Knuth, 1969).
Programming was considered an art, where execution depended more on talent
than on knowledge. Nowadays there are methodologies and techniques to do so,
so that anyone can learn to program if they set their mind to it.

Although the central theme of this book is algorithm design rather than program-
ming, it is important for readers to have a general understanding of the entire pro-
cess of program construction, so that they can understand the role of algorithms
in programming methodology. This is particularly relevant because programs are
constructed to solve a problem, and algorithms specify the solution.

In this sense, it should be noted that building a program is a complex task that re-
quires not only knowledge but also creativity and certain skills from the developer.
Programs can be as large and complex as the problems they intend to solve and
although there may be some similarities between them, just as each problem has
its particularities, so do programs.

Regarding problem-solving, Galve et al. (1993) mention that there is no universal
method to solve any problem, since it is a creative process where knowledge, skill,

19

Introduction

and experience play an important role. When it comes to complex problems, the
important thing is to proceed systematically.

The discipline that studies all aspects related to software production, from require-
ment identification to maintenance after use, is Software Engineering (Sommerville,
2005). Various methodologies have been proposed within this discipline for softwa-
re construction, including: Unified Process, Extreme Programming, Rapid Applica-
tion Development, and Spiral Development.

Each methodology proposes different stages and activities for software construction,
however, there are some phases that are common to all, even if they are given diffe-
rent names. To mention just three examples, Joyanes (2000) proposes eight phases:
problem analysis, algorithm design, coding, compilation and execution, testing, de-
bugging, maintenance, and documentation. Bruegge and Dutoit (2002), on the other
hand, propose: requirement identification, creation of an analysis model, overall de-
sign, detailed design, implementation, and testing. Sommerville (2005) summarizes
them into four: specification, development, validation, and evolution of software.

Considering the above proposals, the process of program construction is organized
into six activities, as detailed below.

1.2.1 Problem Analysis
Since problems do not always have a simple and straightforward specification, half
the work is knowing what problem is to be solved (Aho et al., 1988).

The first step is to ensure that the problem to be solved is well understood and to
grasp its magnitude. Often, the statement of the exercise or the description of needs
provided by a client is not clear enough to determine the requirements that the pro-
gram must meet. Thus, the programmer must stop and ask themselves if they truly
understand the problem they need to solve.

In the real world, problems are not isolated but interconnected. Therefore, to try to
solve a specific problem, it is necessary to set it out clearly and precisely, establi-
shing its scope and restrictions. It is important to know what the computer program
is expected to do; that is, to identify the problem and the solution’s purpose.

In this regard, Joyanes (1996) mentions that the purpose of the analysis is for the
programmer to understand the problem they are trying to solve and to be able to

20

Algorithms Design

20

specify in detail the inputs and outputs of the program. To achieve this, he recom-
mends asking two questions:

What information should the program provide?
What information is necessary to solve the problem?

Requirement identification refers to establishing each of the functions that the pro-
gram must perform and the characteristics it must have. These are like the clauses
of a contract; they define with some precision what needs to be done, although not
how. In highly complex programs, the list of requirements can be very extensive; in
smaller programs, such as those created in introductory programming courses, it is
often limited to just a few. However, establishing the requirements is a fundamental
task of analysis.

Once the requirements have been identified, either through a research process or
through the interpretation of the problem statement, Bruegge and Dutoit (2002) re-
commend developing an analysis model. This involves preparing a document that
records all the information obtained and generated up to that point, preferably
using models and language specific to the field of programming. In small program-
ming exercises, it will be enough to specify the input information, the calculations’
formulas, and the output information.

In summary, problem analysis must at least identify the relevant information related
to the problem, the operations to be performed on that information, and the new
information that must be produced; that is, to know what data the program opera-
tes on, what operations, calculations, or transformations it must perform, and what
results are expected.

1.2.2 Solution Design
Once the problem has been analyzed and understood, one can begin to think about
the solution. Design consists of applying the available knowledge to answer the
question: How can the problem be solved?

Designing a solution involves generating, organizing, and representing ideas
about the problem’s solution. To this end, there are design techniques and tools
specific to each programming model, which allow to record and communicate the
operations and processes to be developed. Under the procedural programming
model, algorithms are used as a solution design; while in the functional model,
the functions are used, and in the object-oriented model, the conceptual models
or diagrams are used.

21

Introduction

Ideas regarding the solution of a problem, i.e., the design of the solution, must be re-
presented using a language familiar to the programming community, so that the de-
sign is communicable. In large software development projects, people designing are
not the same people writing the program code. Thus, it is essential that the solution
in the design phase be documented in such a way that others can fully understand
it to carry out the following phases.

In general terms, the design phase should consider four aspects of the solution:

User Interaction: Or user interface design; this means thinking about how data
will be exchanged between the program and the person using it, how the program’s
required data will be captured, how results will be presented to the user, and how
the user will indicate what they want the program to do.

Data Processing: This means knowing the operations performed on the data ac-
cording to the problem domain. For example, if it is a program to calculate a com-
pany’s payroll, one must know the processes involved to obtain that payroll. It is
important to remember that one cannot program a process that is unknown. The
programmer must first have a clear understanding of the calculations needed to
obtain the desired results. The computer will then automate the process, but the
programmer must specify how to do it.

System Architecture: To solve a problem more easily, it is necessary to break it
down into subproblems so that each one is easier to solve (this topic is developed in
Chapter 6), but all parts must be integrated to provide a complete solution. System
architecture refers to how the parts of the solution are organized and interact with
each other. During the design phase, the system is broken down into different mo-
dules or subsystems, and simultaneously, the architecture is designed to show how
they relate to one another.

Data Persistence: All programs operate on data and must be stored in an organi-
zed way so that the program can save and retrieve it safely. During the design phase,
it is decided how the data will be stored on the secondary storage media.

1.2.3 Program Coding
This is the translation of the problem’s solution expressed in design models into a
series of detailed instructions in a language recognized by the computer, known as a
programming language. The set of detailed instructions is referred to as source code
and must be compiled to become an executable program.

22

Algorithms Design

Unlike design, coding can be a simple task, provided there is a detailed design and
the reserved words of the language, along with its syntax and semantics, are known.

It should be noted that the stages on which the greatest effort and interest should
be focused to develop the necessary skills are analysis and design. While acknowle-
dging the importance of language proficiency, during the coding phase, a good refe-
rence book can be helpful, whereas there is no book that can assist you in analyzing
the problem and designing the solution.

The coding stage includes reviewing the results generated by the source code, line
by line, and this should not be confused with the program test discussed in the
next section.

1.2.4 Testing and Debugging
When coding a program, partial tests are developed to verify that the instructions
are written correctly and perform the expected function. However, just because
a program works or runs does not mean that it fully meets the needs for which it
was developed.

Human errors in computer programming are numerous and increase considera-
bly with the complexity of the problem. The process of identifying and eliminating
errors to arrive at an effective solution is called debugging.

Debugging or testing is as important a task as the development of the solution
itself, and should be approached with the same interest and enthusiasm. Testing
should consider all possible errors that may arise during the execution and use of
the program.

The purpose of testing is to identify weaknesses in the program before it is laun-
ched, allowing for error correction without the loss of information, time, or money.
A successful test is one that detects errors, as all programs have them; thus, tests
are designed with the goal of debugging the program, not confirming that it is we-
ll-constructed.

1.2.5 Documentation
Often, a program written by one person is used by another. Therefore, documenta-
tion serves to help understand or use the program, or to facilitate future modifica-
tions (maintenance).

23

Introduction

The documentation of a program is the guide or written communication in various
forms, whether in statements, drawings, diagrams, or procedures.
There are three types of documentation:

- Internal Documentation
- Technical Documentation
- User Manual

Internal Documentation: These are comments or messages added to the source
code to make it clearer and more understandable.

In a large program, the programmer himself/herself will need the comments in the
code to locate himself/herself and make the corrections or changes necessary after
a while. This documentation is much more important if the changes will be made by
personnel other than those who wrote the original source code.

Technical Documentation: This is a document that records relevant information
regarding the problem posed and how the solution was implemented. Some data
to include are:

- Description of the Problem
- Analysis Models
- Solution Design
- Data Dictionary
- Source Code (program)
- Tests Conducted

This documentation is aimed at personnel with programming knowledge. Hence, it
contains technical information about the program and should not be confused with
the user manual.

The construction of large and complex programs requires documentation to be de-
veloped as the analysis, design, and coding of the software advances. This is due to
two reasons: first, the construction of large programs requires the work of several
people and all specifications must be kept in writing; second, it is not possible to
keep all project information in the memory of those responsible; physical support
is necessary.

User Manual: This is a document intended for the end user that describes the pro-
gram’s operation step by step. It should include detailed information about the ins-

24

Algorithms Design

tallation process, data input, processing, and result retrieval, as well as recommen-
dations and information about potential errors.

1.2.6 Maintenance
It refers to the changes that need be made to the program after it has been put into
operation. These changes may be intended to include new processes or adapt the
program to circumstances that have changed since its development.

Maintenance will be easier to carry out if proper program documentation is available.

The phases exhibited here do not necessarily occur in the order described, since
many development models are iterative; however, they will always be present.

25

2. PROGRAMMING ELEMENTS

Programming
is the art and technique

of systematically constructing
and formulating algorithms.

 Wirth1

Algorithms and programs are made up of series of operations carried out with data.
These data are grouped into categories based on the values they can contain and
the operations that can be performed on them. Operations are specified through
expressions made up of operators and variables, the latter referring to the data in-
volved in the operation.

This chapter pursues the study of those basic yet indispensable elements in the de-
sign of algorithms and the implementation of programs.

2.1 DATA TYPES

Data types are classifications used to organize the information stored in com-
puter memory. These abstractions allow for defining minimum and maximum
values for each type, thus establishing the space each requires and facilitating
memory management.

Data types are used in variable declaration and in validating the operations allowed
on each type. For example, numeric data supports arithmetic operations, while
strings can be concatenated.

Programming languages that handle data types define three elements: primitive or
simple types (numbers, characters, and Booleans), the set of values they can hand-
le, and the allowed operations. From primitive data, composite types can be imple-
mented, such as strings, arrays, and lists (Appleby and Vandekppple, 1998).

1 Anívar Nestor Chaves Torres

26

ALGORITHMS DESIGN

Among primitive data types, there are three types: numeric, alphanumeric, and logi-
cal or boolean. Numeric data can be integers or real numbers, while alphanumeric
data can be characters or strings, as shown in Figure 4.

Figure 4. Data Types

 2.1.1 Numeric Data

Numeric data types represent quantities or quantifiable information, such as the
number of students in a course, an employee’s salary, a person’s age, the value of an
appliance, the area of a country in square kilometers, or a student’s grade.

Integer Data. These are data expressed as exact numbers, meaning they have no
fractional component and can be positive or negative. This type is used to represent
elements that cannot be fractional in the problem domain, for example:

Data Value
The number of employees in a company 150
The subjects a student is taking 5
The number of goals scored in a soccer match 3
The number of votes received by a candidate 5678

27

Programming Elements

It is important to note that the range of integer values between negative infinity and
positive infinity cannot be managed in programming languages since the space re-
served in RAM to store a number is limited. The minimum and maximum values that
can be stored in memory vary depending on the language.

Some programming languages reserve two bytes for integer data, thus, the range of
supported values is between -32,768 and 32,767.

Real Number Data. These are data expressed as numbers that include a fraction
and can be positive or negative. This type of data is used to represent elements
that in the problem domain have values made up of an integer part and a decimal
part, for example:

Data Value
A person’s height (in meters) 1.7
Room temperature (in degrees Celsius) 18.5
A student’s grade (on a scale of 5.0) 3.5
The monthly interest rate 2.6

Programming languages reserve a fixed number of bytes for real-type data, so the
size of these numbers is also limited.

2.1.2 Alphanumeric Data
Alphanumeric data do not represent a numerical quantity or value nor are used
to quantify but to describe or qualify an element to which they refer. For example,
the color of a fruit, the address of a house, a person’s name, an employee’s posi-
tion, or gender.

Alphanumeric data can consist of alphabet characters, numbers, and other sym-
bols; however, even if they include digits, they cannot be operated mathematically.

Characters. Characters are each of the symbols included in a coding system; they
can be digits, letters of the alphabet and symbols. The most well-known system
today is ASCII (American Standard Code for Information Interchange). This requires
one byte of memory to store each character and includes a total of 256 characters.
Examples of characters are: 1, a, %, +, B, 3.

Strings. They are sets of characters enclosed in quotation marks (“ “) that are mani-
pulated as a single piece of data. For example:

28

Algorithms Design

A person’s name: “Joseph”
The location of a university: “Calle 19 con 22”
A book title: “Algorithm Design”

2.1.3 Logical or Boolean Data

Logical data can only take two values: true or false. In programming, they are fre-
quently used to refer to the fulfillment of certain conditions, such as the existence of
a file, the validity of a piece of data, or the relationship between two pieces of data.

2.2. VARIABLES AND CONSTANTS

All computer programs, regardless of their function, operate on a set of data. During
the execution of a program, the data that it uses or generates resides in memory.
Information about where a piece of data is stored, its type, and its value is managed
through the concept of a variable. If the value remains unchanged throughout the
program’s execution, it is called a constant.

2.2.1 Variables

To manipulate a piece of data in a computer program, it is necessary to identify it
with a name and know: the memory location where it resides, the type to which it
belongs, and its value. To make it easier to handle this information, there is an abs-
traction called a variable.

According to Appleby and Vandekopple (1998), a variable is associated with a tuple
made up of the following attributes:

Identifier (variable name)
Address (memory location where the data is stored)
Data Type (specifically: set of values and operations)
Value (data stored in memory)

Identifier. An identifier is a word or sequence of characters that refers to a memory
location where a piece of data is stored.

29

Programming Elements

The length of an identifier and the way it is constructed can vary from one program-
ming language to another. However, there are some recommendations to keep in
mind:

• It should start with a letter between A and Z (upper or lower case)
• It should not contain whitespace
• It should relate to the data being stored in the memory location (mnemonic)
• It should not contain special characters and operators
• After the first letter, digits and the underscore character (_) can be used.

For example, to store a person’s name, the identifier can be:

Person_name
Pname
Pn

It is common for the identifier to represent more than one word since similar data
may correspond to different information elements. For example:

Student Name
Professor Name
Student ID
Professor ID
Student Phone
Professor Phone

In these cases, it is advisable to use a fixed number of characters from the first word
combined with some from the second, applying the same technique to form all
identifiers to make them easier to remember.

The above data identifiers could be formed as follows:

Data Identifier Or also
Student name stud_name sname
Professor name prof_name pname
Student ID stud_ID sid
Professor ID prof_ID pid
Student phone stud_phone sphone
Professor phone prof_phone pphone

30

Algorithms Design

In the second column, the identifiers are formed using the first three characters of
each word in Spanish, while in the third column, they use the first and last charac-
ters of the first word in Spanish and only the first character of the second.

Each programmer has their own strategy for forming identifiers for variables, cons-
tants, functions, and user-defined data types. The important thing is to follow the
previously mentioned recommendations and consistently use the same strategy to
ease the programmer’s memory work.

2.2.2 Types of Variables
Variables can be classified based on three criteria: the type of data they store, their
function, and their scope.

Based on the type of data they store, variables can be integer, real, character, string,
logical, or any other type defined by the programming language.

In terms of functionality, variables can be working variables, counters, accumula-
tors, and switches.

The scope determines the space in which variables exist, they can be global or local.

Working variables. These are variables declared to save values read or calculated
during the program’s execution.

Example:

Real: Area
Integer: base, height
Height = 10
Base = 20
Area = base * height / 2

Counters. These are variables used to record the number of times an operation or
group of operations is executed. The most common use is as a finite loop control va-
riable, where they store the number of iterations. They can also record the number
of records in a file or the amount of data that meets a condition.

Counters are incremented or decremented by a constant value, usually one at a time.

31

Programming Elements

Example: If you want to enter the final grades of students in a group to calculate
the group’s average, since the group size can vary, a variable (counter) is required to
record the number of grades entered, so that the average can then be calculated.

Accumulators. They are also called totalizers. These are variables used to store va-
lues that are read or calculated repeatedly. For example, to calculate the average
grades of a group of students, the first step is to read the grades and sum them in a
variable (accumulator) so that after reading all the grades, the total can be divided
by the number of students to obtain the average.

In this example, a counter is referenced to know the number of students and an
accumulator to sum the grades.

The key difference between an accumulator and a counter is that the accumulator
does not have regular increments; it increases according to the value read or the
result of an operation.

Switches. Also known as flags or sentinels, switches are variables that can take di-
fferent values during the program’s execution, and based on these values, the pro-
gram can vary the sequence of instructions to be executed, meaning it can make
decisions.

Example 1: A switch can be used to inform any module of the program if a specific
file has been opened. The logical variable is declared and initialized to false, and
when the file is opened, it changes to true. Thus, at any moment, to check if the file
has been opened, you just verify the switch’s status.

Example 2: If searching for a record in a file, a logical variable is declared and initiali-
zed to false, indicating that the record has not been found. After searching, when the
record is located, the variable’s value is changed to true. At the end of the search, the
variable (switch) will inform if the record was found or not, depending on whether its
value is true or false, allowing the program to know which instructions to execute.

Example 3: It is common for a program to be protected by a security system. In
some cases, there are different user levels, where access to certain modules de-
pends on the level. The program will enable or disable certain options depending
on the access level, which will be stored in a variable (switch).

Local variables. A variable is considered local when it exists only within the module
or function in which it was declared. This type of variable is useful in modular pro-

32

Algorithms Design

gramming, as it allows each procedure or function to have its own variables without
conflicting with those declared in other modules.

By default, all variables are local to the scope where they are declared. If you want to
declare them as global you need to specify them as such.

Global variables. These are variables declared to be used in any module2 of the pro-
gram. They exist from the time they are declared until the program execution ends.

The concept of local and global variables is less useful when solving problems with
a single algorithm. When the algorithm is divided into subroutines, it is important to
differentiate between variables that disappear at the end of a procedure or a func-
tion and those that transcend modules, as updates to one can affect others.

Programming languages generally define variables as local unless otherwise noted.
Following such logic, this book proposes using the global modifier before the decla-
ration of the variable to specify that it is global.

Global integer: x

Keep in mind not to use the same identifier for a global variable when declaring a
local variable, as updating it within the subroutine could lead to confusion regarding
which memory location is being accessed.

2.2.3 Variable Declaration
This operation consists of reserving enough memory space to store a piece of data
of the specified type while including the identifier in the program’s variable list.

To declare a variable, write the data type followed by the identifier of the variable,
as follows:

DataType identifier

2 The concepts of module, subroutine, procedure, and function are related to the “divide-and-

conquer” strategy applied to face the complexity of software development. It consists of breaking

a large problem into smaller problems that are easier to solve, and by making the partial solutions

interact, the overall problem is solved. This topic is discussed in Chapter 6.

33

Programming Elements

If you want to declare multiple variables of the same type, write the data type fo-
llowed by a list of identifiers separated by commas (,) as follows:

DataType identifier1, identifier2, identifier3

Example:

Integer: age
Real: height, weight, salary
String: name, surname, address

Although some programming languages allow variables to be declared when nee-
ded, it is advisable, for good programming practices, to always declare variables
before using them, ideally at the beginning of the program or function.

2.2.4 Value Assignment
This operation consists of storing a piece of data in a memory location using a pre-
viously declared variable. The assigned data must correspond to the type for which
the variable was declared.

An assignment expression has the form:

variable = data

Example:

Variable Declaration
String: name, address
Real: salary
Value Assignment

name = “Joseph”
address = “Carrera 24 15 40”
salary = 1000000

You can also assign the result of an expression to a variable, in the form:

variable = expression

34

Algorithms Design

Example:

Variables Declaration:
Integer: base, height
Real: area

Assignment:

base = 10
height = 5
Area = base * Height

An assignment expression has three parts: a variable, the equal sign, and the value
or expression whose result is assigned to the variable. The variable always appears
on the left of the equal sign, while the value or expression is on the right.

2.2.5 Constants

A constant refers to a memory location and is formed in the same way as a variable,
except that the stored data does not change during program execution.

Constants are used to avoid writing the same values in different parts of the pro-
gram; instead, a reference to the constant is used. Therefore, when it is necessary
to change this value, it is enough to make change in a single line of code where the
constant was defined.

Another reason for establishing a constant is that it is easier to remember and write
an identifier than a value. For example, it is easier to type pi than 3.1416, especially if
the value needs to be used repeatedly in the program.

2.3 OPERATORS AND EXPRESSIONS

Operators are symbols that represent operations on data. Expressions are combina-
tions of operators and operands (data) that generate a result.

In programming, there are three types of operations: arithmetic, relational, and lo-
gical, each with a set of operators that allows the expressions to be constructed.

35

Programming Elements

2.3.1 Arithmetic Operators and Expressions

Arithmetic operators are applied to numeric data and allow for arithmetic opera-
tions. They are represented in Table 2.

Table 2. Arithmetic Operators

Operator Operation
+ Addition
- Subtraction
* Multiplication
/ Division
Mod Module

Arithmetic expressions combine the operators in Table 2 with numeric data to ge-
nerate a new number as a result. For example, if you have the base and height of a
triangle, you can calculate its area using an arithmetic expression.

Example:

Variable Declaration

Real: base, height, area

Value Assignment

base = 10
Height = 15

Arithmetic expression to calculate the area:

base * height / 2;

Assignment of the result of an arithmetic expression to a variable:
area = base * height / 2

The result of this expression is 75 and is stored in the variable area.

Arithmetic operators can operate on both integer and real data types, except for the
Mod operator, which only applies to integers.

36

Algorithms Design

Some authors, such as Becerra (1998) and Cairó (2005), differentiate regular division
(/) and integer division, using the reserved keyword div for the latter. In this book,
the symbol / is used for all division operations. If the operands are integers, the re-
sult will also be an integer, which is referred to as integer. If either of the operands is
real, the result will be of real type.

The Mod (modulus) operator returns the remainder of an integer division. Example:

10 Mod 2 = 0 since 10 / 2 = 5 and the remainder is 0
10 Mod 4 = 2 since 10 / 4 = 2 and the remainder is 2

Combining different arithmetic operators in the same expression can lead to ambi-
guity, meaning there may be multiple interpretations and therefore multiple results.
To avoid such ambiguity, operators have a hierarchy that determines which one is
executed first when there are several in the same expression. To alter the order of
execution determined by the hierarchy, parentheses are needed.

As shown in Table 3, the hierarchy of operators start with parentheses, which allow
for the construction of subexpressions that are developed first. Then, we have mul-
tiplication, division, and modulus, which have a higher level of hierarchy than addi-
tion and subtraction. This means that if an expression contains both multiplication
and addition, multiplication is executed first, followed by addition. When several
operators of the same level, such as addition and subtraction, are present, execu-
tion occurs from left to right.

Examples:

 3 * 2 + 5 = 6 + 5 = 11
 3 * (2 +5) = 3 * 7 = 21

 6 + 4 / 2 = 6 + 2 = 8
 (6 + 4) / 2 = 10 / 2 = 5

 5 * 3 + 8 / 2 – 1 = 15 + 4 - 1 = 18
 5 * (3 + 8) / (2 - 1) = 5 * 11 / 1 = 55

 10 + 12 Mod 5 = 10 + 2 = 12
 (10 + 12) Mod 5 = 22 % 5 = 2

37

Programming Elements

Table 3. Hierarchy of Arithmetic Operators

Priority level Operator Operation
1 () Grouping
2 *, /, Mod Multiplication, division and modulus

3 +, - Addition, subtraction, increment and
decrement

2.3.2 Relational Operators and Expressions

Relational operators allow comparisons between data of the same type. Relational
expressions yield a logical data type: true or false. These expressions are mainly

used for making decisions or controlling loops. The operators are shown in Table 4.

Table 4. Relational Operators

Operator Comparison
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
= Equal to
<> Not equal to

Some examples of relational expressions are:

Variable declaration and initialization

Integer x = 5;

Relational expressions:

x < 10 = true
x > 10 = false
x = 10 = false

Variable declaration and initialization

38

Algorithms Design

Real a = 3, b = 1

Relational expressions:

a = b = false
a > b = true;
a < b = false
a <> b = true

2.3.3 Logical Operators and Expressions
These operators are used only to operate on logical or boolean data (true or false). Lo-
gical expressions yield another logical data type. The operators are shown in Table 5.

Table 5. Logical Operators

Operator Operation
AND Conjunction
OR Disjunction
NOT Negation

Table 6 shows the results of operating logical data with the AND, OR, and NOT ope-
rators.

Since logical data is not common in the real world, most logical expressions are built
from relational expressions. Some examples are:
Real grade = 3.5;

(grade >= 0) AND (grade <= 5.0) = True

Integer a = 15, b = 8;

(a > 10) OR (b > 10) = True
NOT (b > 5) = false

39

Programming Elements

Table 6. Result of Logical Operations

Operand 1 Operator Operand 2 = Result
True

AND

True

=

True
True False False
False True False
False False False
True

OR

True

=

True
True False True
False True True
False False False

NOT
True

=
False

False True

2.3.4 General Hierarchy of Operators

Arithmetic, relational, and logical operators can be mixed in the same expression.
In these cases, it is necessary to pay special attention to their hierarchy to ensure
that each one operates on valid types and does not generate runtime errors. For
this purpose, it is advisable to consider the hierarchical order corresponding to each
operator to establish the execution order and enforce priority for expressions to be
developed correctly. The hierarchy of all the operators studied in this chapter is pre-
sented in Table 7.

Table 7. Hierarchy of Operators

Priority Operators
1 ()
2 *, /, Mod, NOT
3 +, -, , AND
4 >, <, >=, <=, <>, =, OR

Note that operators at the same level are executed from left to right.

41

3. ALGORITHMS

Time is a master of ceremonies
that always ends up placing us

where we belong;
we move forward,

stop and move backwards
according to its orders.

Saramago3

The word algorithm comes from the Latin translation of the Arabic term Al-Khowa-
rizmi, which means “originating from Khwarizm,” the ancient name for the Aral Sea
(Galve et al., 1993). On the other hand, Al-Khowarizmi was the name of a Persian ma-
thematician and astronomer who wrote a treatise on the manipulation of numbers
and equations in the 9th century (Brassard and Bratley, 1997), (Joyanes et al., 1998).

3.1 CONCEPT OF ALGORITHM

Different definitions of algorithms have been proposed, including: “a finite and
unambiguous set of steps expressed in a certain order that, for some initial con-
ditions, allow solving the problem in a finite time” (Galve et al., 1993: 3); or, “a set of
rules to perform a calculation, either by hand, or more frequently, on a machine”
(Brassard and Bratley, 1997: 2).

Similarly, it has been considered to be a well-defined computational procedure that
takes a value or a set of values as input and produces some value or set of values as
output. Thus, an algorithm is a sequence of computational steps to transform input
into output. (Comer et al., 2001).

According to Becerra (1998), an algorithm is the way to solve a problem in a com-
puter; it is a group of instructions written according to syntactic rules provided by a
programming language.

For Hermes (1984:19), “an algorithm is a general procedure that obtains the answer
to any suitable problem through a simple calculation according to a specified me-

3 [Translation of the original epigraph in Spanish]

42

Algorithm Design

thod,” and he later mentions that this procedure must be clearly specified so that
there is no room for the imagination and creativity the executor.

An algorithm can also be defined as “a series of detailed and unambiguous opera-
tions to be performed step by step, leading to the solution of a problem” (Joyanes,
1992: 2).

When a problem is said to have an algorithmic solution, it means that it is possible
to write a computer program that will obtain the correct answer for any set of input
data (Baase and Gelder, 2002).

For a problem’s solution to be translatable into a programming language, the steps
expressed in the algorithm must be detailed, so that each involves a trivial opera-
tion; that is, the steps do not involve processes requiring an algorithmic solution. If
this situation arises, the algorithm must be refined, meaning it should be redevelo-
ped for the specific task in question.

If the problem to be solved is very large or complex, it is advisable to break it down
into tasks that can be addressed independently and are easier to solve. This is called
modular design.

As an example, consider Euclid’s algorithm for calculating the Greatest Common Di-
visor (GCD). The GDC of two integers is the largest number that divides both, which
can also be one of the numbers, as every number is divisible by itself.

This algorithm establishes specific steps that, when executed a certain number of
times, regardless of the proposed numbers, will always find the greatest common
divisor. The solution is presented later in the four notations explained in this chapter.

3.2 CHARACTERISTICS OF AN ALGORITHM

An algorithm must have at least the following characteristics:

• Precision: This means that the operations or steps of the algorithm must be
developed in a strict order, as the development of each step must follow a lo-
gical sequence.

43

Algorithms

• Definiteness: The result of executing an algorithm depends exclusively on the
input data; that is, whenever the algorithm is executed with the same set of
data, the result will be the same.

• Finiteness: This characteristic implies that the number of steps in an algori-
thm, no matter how large or complicated the problem it solves, must be limi-
ted. Every algorithm, regardless of the number of steps it includes, must reach
an end. To make this characteristic evident, the representation of an algorithm
always includes start and end steps.

• Notation: For the algorithm to be understood by any interested person, it must
be expressed in one of the commonly accepted forms to reduce the ambiguity
inherent in natural language. Some well-known notations include pseudoco-
de, flowcharts, Nassi/Shneiderman diagrams, and functional representations.

• Correctness: The algorithm must be correct, i.e., it must meet the need or sol-
ve the problem for which it was designed. To ensure that the algorithm achie-
ves its goal, it must be tested; this is called verification, and a simple way to
verify it is through desk checking.

• Efficiency: Discussing the efficiency or complexity of an algorithm involves
evaluating the computational resources required to store data and to perform
operations against the benefit it offers. The less resources required, the more
efficient the algorithm.

If the description of a procedure or the statement of a solution to a problem lacks
these characteristics, it cannot technically be considered an algorithm. For exam-
ple, cooking recipes are very similar to algorithms in that they describe the proce-
dure for preparing some kind of food. Some authors, such as López, Jeder and Vega
(2009), have taken cooking recipes as examples of algorithms. However, they are ra-
rely defined enough to be an algorithm, as they often leave room for the subjectivity
of the person executing the actions.

The fundamental difference between a recipe and an algorithm is that the former
is not defined, as shown in the example in Table 8, taken from Lopez, Jeder and
Vega (2009).

44

Algorithm Design

44

Table 8. First Algorithm for Preparing a Cup of Coffee

1 Turn on a burner
2 Place a pot of milk on the burner
3 Wait for the milk to boil
4 Place coffee in a cup
5 Pour some milk into the cup and stir
6 Pour more milk into the cup until full
7 Add sugar to taste

These types of actions cannot be carried out automatically by a computer, as they
require human judgment. To make it an algorithm, in the sense supported by this
book, it would need to be written as shown in Table 9.

Table 9. Second Algorithm for Preparing a Cup of Coffee

1 Begin
2 Turn on a burner
3 Place a pot with 200 ml of milk on the burner
4 Place 10 g of instant coffee in a cup
5 Place 10 g of sugar in the cup
6 Mix sugar and coffee
7 Wait until the milk boils
8 Turn off the burner
9 Pour the milk into the cup
10 Mix until the coffee and sugar dissolve
11 End

The first version corresponds to a recipe, the second to an algorithm. In the second
version, the beginning and end are specified, the steps have a logical order, the ac-
tivities are defined (with explicit quantities) so that if it is applied several times with
the same ingredients, the same result will be obtained. In other words, the final pro-
duct depends on the algorithm and not on the person executing it.

3.3 NOTATIONS FOR ALGORITHMS

An algorithm is defined as the set of steps to find the solution to a problem or to
perform a calculation. These steps can be expressed in different forms, such as des-
criptions, pseudocode, diagrams, and mathematical functions. The simplest form is

45

Algorithms

undoubtedly prose description; however, natural language is very broad and ambi-
guous, which makes it very difficult to achieve a precise description of the algorithm.
Given that clarity is a fundamental characteristic of algorithm design, it is prefera-
ble to use pseudocode. Graphical representation is done through diagrams that are
easy to understand and verify; the main types include flowcharts and N-S diagrams.
Mathematical representation is typical of the functional programming model and
consists of expressing the solution through mathematical functions, preferably
using Lambda Calculus4.

3.3.1 Textual Description

This is undoubtedly the simplest way to write an algorithm; it involves creating a list
of activities or steps in prose form, without applying any notation.

This way of presenting an algorithm has the disadvantage of leading to inaccuracies
and ambiguities due to the broadness of language. It is appropriate when writing the
preliminary version of an algorithm and when the focus is on logic rather than on
how the ideas are communicated. Once the algorithm is completed, it is advisable
to convert it into one of the notations explained below.

Example 1. Greatest Common Divisor

One of the oldest known algorithms is the one designed by Euclid to calculate the
Greatest Common Divisor (GCD) between two numbers. The GCD (a,b)—read as the
greatest common divisor of the numbers a and b—consists of identifying a number
c that is the largest number that divides both a and b exactly.

This algorithm expressed descriptively would be:

Read the two numbers, then divide the first by the second and take the remainder.
If the remainder is zero, then the GCD is the second number. If the remainder is grea-

4 The Lambda Calculus is a formal system that defines a notation for computable functions, facilitates

the definition and evaluation of expressions and is therefore the theoretical foundation of the

functional programming model. It was developed by Alonso Church in 1936.

Euclid (Tyre, 330 - Alexandria, 300 B.C.), Greek mathematician. By order of the pharaoh Ptolemy I

Sóter (the savior), he wrote the work Elements, composed of 13 volumes in which he systematized the

mathematical knowledge of his time; other works are also attributed to him, such as: Optics, Data, On

the divisions, Phenomena and elements of music (Gran Enciclopedia Espasa, 2005: 4648).

46

Algorithm Design

ter than zero, divide the second number over the remainder of the last division and
continue dividing until the remainder is zero. The solution will be the number used
as the divisor in the last division.

3.3.2 Pseudocode

Pseudocode is a mixture of a programming language and natural language (Spani-
sh, English, or any other language) in the presentation of an algorithmic solution.
This notation allows for structured algorithm design while using the language and
vocabulary familiar to the designer.

Pseudocode approximates the structure and syntax of a given programming lan-
guage, which facilitates the understanding of the algorithm and its coding, as there
is a close correspondence between the organization of the algorithm and the syntax
and semantics of the language.

Considering that natural language is very broad, while programming languages are
limited, it is necessary to use a set of instructions that represent the main structures
of programming languages. These instructions are referred to as reserved words
and cannot be used as variable identifiers.

Some reserved words are:

String Function Logic Repeat
Character Do While Return
Decrement Until For Switch
Integer Increment Procedure If
Write Begin Real Else
End Read

Indentation

One of the difficulties with pseudocode is that it is not easy to see programming
structures such as branches and loops, as instructions appear one after the other,
regardless of the sequence in which they execute.

Indentation consists of leaving a space or tab for instructions within a program-
ming structure to indicate their dependency and to show where a structure begins
and ends.

47

Algorithms

Advantages of using Pseudocode

Some advantages of this notation are the following:

• It takes up less space
• It allows to represent repetitive operations easily
• It is very easy to translate from pseudocode to program code in a program-

ming language
• When indentation is applied, it clearly shows the dependence of the actions on

the programming structures.

In Table 10, the Euclidean algorithm is presented in pseudocode notation. This
example shows the application of the concept of indentation to highlight the de-
pendence of the instructions relative to the “while” structure and the start - end of
the algorithm.

Table 10. Algorithm for Obtaining the GCD

1 Begin
2 Integer: a, b, c=1
3 Read a, b
4 While c>0 do
5 c = a Mod b
6 a = b
7 b = c
8 End while
9 Write “GCD = ”, a
10 End algorithm

In this algorithm, the two numbers a and b are read, and variable c is initialized to 1
to ensure that the loop executes. Successive divisions are performed, first with the
input numbers and then taking the divisor as the dividend and the remainder as the
divisor, until an integer division occurs. When this happens, the number that has
acted as the divisor will be the solution or GCD.

3.3.3 Flowchart

This is the graphical representation of an algorithm using a set of symbols that re-
present the basic operations and structures of programming. The set of symbols
used to design flowcharts is shown in Figure 5.

48

ALGORITHM DESIGN

Figure 5. Symbols Used for Designing Flowcharts

The representation using flowcharts makes the algorithm easy to understand, as
its structure and flow of operations are visible. However, when the algorithm is
long, constructing the flowchart can be challenging. Although connectors can be
used inside and outside the page, their use can aff ect the understanding of the
algorithm’s logic.

49

ALGORITHMS

Figure 5. (Continued)

Recommendations for constructing flowcharts

Based on Cairó (2005), here are some recommendations for properly constructing
flowcharts:

• The first symbol in any flowchart must be the start symbol, and regardless of
the paths taken, it should always lead to the end symbol.

• All symbols must be linked with directed lines, representing the inflow and out-
flow, except for the start, which has no inflow, and the end, which has no outflow.

• Lines should be straight, either horizontal or vertical, and should not cross.
Whenever possible, use only downward and rightward lines to facilitate the
reading of the algorithm. An exception to this rule is cycles.

50

Algorithm Design

• Every line must start with a symbol and end with a symbol.

• Connectors should be numbered consecutively and used only when necessary.

• Some symbols can be used to represent more than one instruction; therefore,
it is necessary to write a label using natural language expressions. Program-
ming language statements should not be used.

• If abbreviations are used for variables, the comment symbol should be used to
describe them in detail.

• Try to use only one page for the diagram; if this is not possible, it is advisable to
use numbered connectors and also number the pages.

Advantages of using flowcharts

Joyanes(1992) points out some advantages of using flowcharts for algorithm design:

• They facilitate understanding of the algorithm
• They aid documentation
• The use of standard symbols makes it easier to find equivalent statements in

programming languages
• They simplify the review, testing, and debugging of the algorithm

Figure 6 shows the Euclidean algorithm in flowchart notation

3.3.4 Nassi-Shneiderman Diagram
This notation was proposed by Isaac Nassi and Ben Shneiderman5 in 1973 as an
alternative to flowcharts for applying structured programming. It is also known as
Chapín diagram or simply N-S diagram.

5 Isaac Nassi is an American computer expert. He has served as the Director of Systems Development

at Cisco and as the Director of Research at SAP America. He has also worked for Apple Computer.

Ben Shneiderman is an American mathematician/physicist and computer scientist, a professor of

computer science at the Human-Computer Interaction Laboratory at the University of Maryland. His

research focuses on human-computer interaction. He defined Universal Usability with consideration

for the diverse characteristics of users and the technology they use

51

ALGORITHMS

Figure 6. Flowchart for the Euclidean Algorithm

An N-S diagram is constructed using pseudocode instructions and a reduced set
of basic shapes corresponding to sequential, selective, and iterative programming
structures. It does not use arrows to establish the flow of operations; instead, it
places the boxes corresponding to the instructions one aft er another or inside one
another, making the sequence, branching, or repetition in the execution of the algo-
rithm evident.

Nassi and Shneiderman (1973) argue that the diagrams they designed off er the fo-
llowing advantages:

• Decision structures are easily visible and understandable
• Iterations are visible and well-defined

52

ALGORITHM DESIGN

• The scope of local and global variables is evident in the diagram
• Control cannot be transferred arbitrarily
• Recursion is represented in a trivial form
• Diagrams can be adapted to the peculiarities of the programming language to

be used

Unlike pseudocode and flowcharts, the N-S diagram provides a more structured
view of the steps in the algorithm and thus facilitates not only the next step of co-
ding but also understanding and learning.

A program is represented by a single diagram that includes all the operations requi-
red to solve the problem, starting with a rectangle labeled “begin” and ending with
another labeled “end.” To connect one diagram to another, the word “process” and
the name or number of the subprogram to connect are used. The name of the pro-
gram or algorithm is placed outside the diagram. These diagrams detail the input
and output data and the processes that are part of the algorithm (Alcalde and Gar-
cía, 1992).

In N-S, sequential structures such as variable declaration, assignment, reading and
writing data, and invoking subroutines are written in a rectangle, as shown in Figure 7.

The selective structure if - then - else - end if, is represented by placing the condi-
tion in an inverted triangle, which is in turn inside a rectangle. The execution flow co-
rresponding to the decision alternatives is placed to the left and right, respectively.
The selective structure is shown in Figure 8.

Figure 7. Sequence Structure in N-S Notation

53

ALGORITHMS

Figure 8. Selective Structure in N-S Notation

The multiple decision structure switch is represented by an inverted triangle inside
a rectangle, with a rectangle below for each possible value of the variable. Figure 9
shows the relationship between the value of the variable and the action to be per-
formed.

Figure 9. Multiple Selection Structure in N-S Notation

Iterative structures are represented by writing the cycle specification in one rectan-
gle and the repeating actions in a second rectangle placed inside the first one. In
the original document, the authors propose three ways to represent iterative struc-
tures: in the while cycle, the inner rectangle is placed at the bottom; in the for cycle,
it is centered; and for the repeat until cycle, it is at the top, leaving space below for
the cycle specification. In this book, to facilitate the design and interpretation of
algorithms using this notation, a single representation is proposed, with the inner
rectangle centered, leaving space above and below for the cycle specification, as
shown in Figure 10.

54

ALGORITHM DESIGN

Figure 10. Iterative Structure in N-S Notation

As an example of the Nassi-Shneiderman notation, Figure 11 presents the Euclidean
algorithm to obtain the GCD.

Figure 11. Euclidean Algorithm in N-S Notation

 3.3.5 Functional Notation

In this case, the term function indicates a rule of correspondence that associates
an element from the domain set with another from the target set, as understood
in mathematics; it does not refer to a subprogram as understood in imperative
programming.

A function is specified by a name, its domain, range, and rule of correspondence. Let
f be a function and x a value from its domain; the notation f(x) represents the ele-

55

ALGORITHMS

ment y from the range that f associates with x. In other words, f(x) = y. The expression
f(x) is known as the application of the function (Galve et al., 1993).

If f(x,y) is the Greatest Common Divisor function of two integers. The solution for the
GCD of two numbers is shown in Table 11 using the Euclidean algorithm represented
in functional notation.

Table 11. Euclidean Algorithm in Functional Notation

The notations presented—pseudocode, flowchart, Nassi-Shneiderman diagram,
and functional notation—are the most important, but there are many more. On this
subject, Santos, Patiño and Carrasco (2006: 15) present, under the concept of “Tech-
niques for Designing Algorithms,” others such as flowcharts, organizational charts,
decision tables, state transition diagrams, and Jackson diagrams.

 3.4 STRATEGY FOR DESIGNING ALGORITHMS

To design an algorithm, it is essential to know the domain of the problem and be
clear about what is expected from the algorithm. The analysis phase should provide
an accurate description of the data with which the algorithm works, the operations
to be carried out, and the expected results.

A computer program automatically carries out a series of operations that take a
set of input data, performs the previously defined processes, and generates one
or more outputs. An algorithm is the specification of such a series of operations; in
other words, it defines the operations that will later be performed automatically.
Consequently, to design an algorithm, it is necessary to know the operations requi-
red to achieve the expected result.

In this order of ideas, before attempting to express the solution to the problem in
the form of an algorithm, it is advisable to take a set of input data, perform opera-

56

Algorithm Design

tions, and obtain the results manually. This exercise will help identify all the data,
separate the inputs from the outputs, and establish formulas for the development
of calculations that will yield the expected results.

Example 2. Even or Odd Number

This example is about applying the strategy to design an algorithm to determine
whether a number is even or odd.

As explained, before trying to write an algorithm, it is necessary to consider how
to solve this problem for a particular case, without thinking about algorithms or
programs.

First, establish the concept of an even number: an even number is one that, when
divided by two, results in an integer with a remainder of zero.

Now, suppose the number in question is 10. How do you confirm that it is an even
number?

If you think a bit, you can find two ways to do it, both involving integer division
by two.

The first method consists of taking the quotient and multiplying it by two; if the re-
sult is equal to the number, which in this case is 10, you confirm that the number is
even; otherwise, it is odd.

10 / 2 = 5

5 * 2 = 10 => confirmed, 10 is an even number

The second alternative is to take the remainder; if it is equal to zero, it means that
the integer division is exact, confirming that the number is even; on the contrary, if
the remainder is equal to one, the number is odd. To obtain the remainder, the Mod
operator is used as presented in Section 2.3.1.

57

Algorithms

10 Mod 2 = 0 => confirmed, 10 is an even number

Similarly, test another number, such as 15.

Using the first method, we have:

15 / 2 = 7

7 * 2 = 14 => 15 is an odd number
Using the second method:

15 Mod 2 = 1 => 15 is an odd number

From these two examples, it follows that to solve this problem, an input is used,
corresponding to the number to be evaluated, the process consists of an integer
division from which the quotient or the remainder is taken depending on the pro-
grammer’s preference, and the expected result is a message: “even number” or
“odd number”.

Now, after solving two particular cases of this problem, you can proceed to express
the solution algorithmically using any of the notations explained in Section 3.3. Ta-
ble 12 presents the solution in pseudocode.

Table 12. Pseudocode for Even/Odd Number Algorithm

1 Begin
2 Integer: n, r
3 Read n
4 r = n Mod 2
5 If r = 0 then
6 Write n, “is an even number”
7 Else
8 Write n, “is an odd number”
9 End if
10 End algorithm

58

ALGORITHM DESIGN

In this algorithm, two variables are declared: the first to store the number to be evalua-
ted, and the second to store the remainder of the integer division (line 4). To evaluate
the content of variable r, the selective structure is used as explained in Section 4.2.2.

Figures 12 and 13 show this same algorithm through flowcharts and N-S diagrams,
respectively.

Figure 12. Flowchart of the Even/Odd Number Algorithm

59

ALGORITHMS

Figure 13. Nassi-Shneiderman Diagram of the Even/Odd Number Algorithm.

 3.5 VERIFICATION OF ALGORITHMS

Aft er designing the solution of a problem using any of the methods discussed ear-
lier, it is necessary to verify that the algorithm works properly; that is, that it has
the essential characteristics to be considered a good algorithm, such as being
finite, defined, precise, correct and eff icient. Algorithm verification is also known
as des checking.

To verify the correctness of an algorithm, a table is created with a column for each
variable or constant used, along with some additional columns to record execu-
tions, iterations, and outputs. The algorithm is then executed step by step, and the
values of the variables are recorded in the table. By the end of the algorithm, it can
be observed how the input data or initial values transform to generate the output
data. If the process is correct and the outputs are as expected, the algorithm is dee-
med correct. If any of the data is not as expected, the design is reviewed, and neces-
sary changes are made until it works properly.

Applying the above, we take the algorithm from example 2 and verify it three times
with diff erent numbers. In the first execution, the number 6 is entered; the division
by 2 yields a remainder of 0, resulting in the message: “6 is an even number,” which
is correct. In the second execution, the number 3 is entered; upon division, a remain-
der of 1 Is obtained, leading to the message: “3 is an odd number.” In the third exe-
cution, the number 10 is entered, the remainder of the integer division is 0, yielding

60

Algorithm Design

the result: “10 is an even number”.
Table 13 presents the verification performed on the algorithm from example 2,
which reads a number and displays a message indicating whether it is even or odd.

Table 13. Verification of the Even/Odd Number Algorithm

Execution n R Result
1 6 0 6 is an even number
2 3 1 3 is an odd number
3 10 0 10 is an even number

61

4. PROGRAMMING STRUCTURES

Knowing that a problem
can be solved in theory

by a computer
 is not enough to tell us

whether it is practical to do so.
 Baase and Van Gelder

Structured programming uses three types of structures: sequential, which are run
one after the other in the order they are written; decision, which allows skipping
parts of the code or selecting the execution flow from two or more alternatives; and
iterative, which are used to repeat the execution of a certain part of the program.

4.1 SEQUENTIAL STRUCTURES

These structures are characterized by running one after another in the order they
appear in the algorithm or program, such as assigning a data to a variable, reading
data, or printing a data.

4.1.1 Assignment

This operation consists of saving a data in a given location in the reserved memory
through the declaration of a variable.

Assignment is a relevant operation in the imperative programming paradigm, where
all data, read and obtained as a result of a calculation, is stored in memory awaiting
further instructions.

Example:

integer a, b, c
string: operation
a = 10
b = 15

62

Algorithm Design

c = a + b
operation = “sum”

The assignment of variables is discussed in more detail in Section 2.2.4.

4.1.2 Data Input

A program operates on a set of data provided by the user or retrieved from a stora-
ge device. Similarly, the algorithm requires that data be provided from which it will
obtain the expected results.

Reading data consists of taking data from an external medium or a file and loading it
into memory where it can be processed by the program (Joyanes, 1988). The default
device is the keyboard.

For reading data, the “read” instruction is used in pseudocode and its equivalents
in different notations.

In pseudocode, the “read” instruction has the following syntax

 Read < list of variable identifiers>

Example:

 Read a, b

Where a and b are the variables that will receive the values and therefore must be
declared in advance.

In flowcharts, the read instruction can be represented in two ways: using the key-
board reading symbol or through an input and output process. In N-S diagrams, all
sequential structures are written inside a box, so that the reading of data is repre-
sented by the word read inside a box, as shown in Figure 14.

63

PROGRAMMING STRUCTURES

Figure 14. Data Input Symbols

Any of the two symbols in Figure 14a is valid for indicating a data read in a flowchart.
Figure 14b is exclusive for N-S diagrams.

4.1.3 Data Output
Every program performs one or more tasks and generates one or more data as a
result. The results are presented to the user using instructions and data output de-
vices such as the screen or printer.

To send information from the computer memory to an output device, the pseudo-
code instruction is used as “write” and its equivalents in other notations.

In pseudocode data reading is written as:

Write < list of constants and variables >

Example:

Write a, b

Where a and b are previously defined variables

Write “This is a message”

When more than one variable is written, it is necessary to separate them by commas
(,) and messages are written in double quotes “”. If a variable is written in quotes the
identifier will be shown and not the content.

64

ALGORITHM DESIGN

Example:

String: name
Integer: age
Name = “Juan”
Age = 25

The correct way to display data is:

Write “Name: “, name
Write “Age: “, age

For which the result will be:

Name: Juan
Age: 25

Writing in the form:

Write “name”
Write “age”

It will only show the labels: “name” and “age”

In a flowchart data output can be represented by three symbols: screen output,
printer output, and an input/output process (Figure 15a). In N-S diagrams, the “wri-
te” instruction is placed inside a box as shown in figure 15b.

Figure 15. Data Output symbols

65

Programming Structures

4.1.4 Examples with Sequential Structures

Example 3. Adding Two Numbers

This algorithm reads two numbers, stores them in variables, sums them, and dis-
plays the result. It aims to represent algorithmically the process of adding two va-
lues. For example:

3 + 2 = 5

If this operation is converted into an arithmetic expression with variables, it beco-
mes:

r = x + y

By assigning or reading values for the variables x and y, we can compute the result.
For example:

x = 6
y = 7

r = x + y
r = 6 + 7
r = 13

From this example, it follows that the algorithm requires two inputs, which are sto-
red in the variables x and y. Using these, the expression (process) is developed, and
the result is the output of interest to the user, therefore, this is the output data.

Input: x, y
Process: r = x + y
Output: r

Now that the general solution to the problem is understood, it can be expressed al-
gorithmically. Table 14 presents the algorithm in pseudocode notation, and Figures
16 and 17 show flowcharts and N-S diagrams, respectively.

66

ALGORITHM DESIGN

Table 14. Pseudocode for the Algorithm to Add Two Numbers

1 Begin
2 Integer: x, y, r
3 Read x, y
4 r = x + y
5 End algorithm

Figure 16. Flowchart for Adding Two Numbers

Figure 17. N-S Diagram for Adding Two Numbers

Begin

Integer: x, y, r

Read x, y

r = x + y

Write x, “ + “, y, “ = “, r

End algorithm

67

Programming Structures

In this algorithm, three variables are declared: the first two (x, y) correspond to the
two input data, and the third (r) saves the result of the process. The output for this
exercise is undoubtedly the result of the operation; however, in many programs, it
is also necessary to show some of the input data for the output to be more unders-
tandable, in this example, the operands and the result of the operation are shown.

To verify whether this algorithm is correct, a table like the one shown in Table 15 is
created, and the algorithm is run line by line, providing the input data and perfor-
ming the operations. The data is written in the columns of the table labeled with
the variables and then checked if the output is correct. (The algorithm verification is
explained in Section 3.5).

Table 15. Verification of the Algorithm for Adding Two Numbers

Execution X y r Output
1 3 4 7 3 + 4 = 7
2 5 8 13 5 + 8 = 13
3 2 3 5 2 + 3 = 5

It is important to remember that, when verifying the algorithm, the steps must be
strictly followed and not done from memory, as what is in mind and what is written
may not be the same, and what we want to verify is what is written.

Example 4. The Square of a Number.

The square of a number is equal to multiplying the number by itself, as shown:

32 = 3 * 3 = 9
52 = 5 * 5 = 25

Now, to generalize the operation, a variable is used for the number that needs to be
squared, resulting in an expression of the form:

num2 = num * num = ?

If we take this process into an algorithm and then into a program, the computer will
be able to provide the result for any number. However, before proceeding to design
the algorithm, the information is organized in terms of input, output, and process.

68

Algorithm Design

Input: number
Output: the square of the number
Process: square = number * number

This information is used to design the solution of the problem. Table 16 shows the
pseudocode, and Figures 18 and 19 show flowcharts and N-S diagrams.

Table 16. Pseudocode to Calculate the Square of a Number

1 Begin
2 Integer: num, square
3 Read num
4 square = num * num
5 Write square
6 End algorithm

In this algorithm, two variables are declared: num to store the number entered by
the user and square to store the result of the process, that is, the square of the num-
ber. Table 17 shows three test runs to verify the correctness of the algorithm: in the
first one, the number 3 is entered and the result is 9; in the second one, the number
2 is entered and the result is 4; and in the third one, the number 7 is entered and the
result is 49. These results confirm that the algorithm is correct.

Table 17. Verification of the Algorithm for the Square of a Number

Execution num square Output
1 3 9 9

2 2 4 4

3 7 49 49

69

PROGRAMMING STRUCTURES

Figure 18. Flowchart to Calculate the Square of a Number

Figure 19. N-S Diagram to Calculate the Square of a Number

Begin

Integer: num, square

Read num

square = num * num

Write square

End algorithm

Example 5. Selling Price of a Product

Consider the following case: a liquor store purchases its products by the case and
sells them by the unit. Given that a case of any product has a cost c and contains n
units, it is desired to calculate the price p for each unit, ensuring a 30% profit.

70

Algorithm Design

The first step is to understand the problem, that is, to be able to obtain the results
and solve the problem manually.

Example 1: A case of rum is purchased for $240,000,oo (c), containing 24 units (n), and
the goal is to achieve a 30% profit. What price (p) should each unit be sold for?

To solve this problem, three calculations are necessary: first, apply the profit percen-
tage to the cost of the case; second, add the cost and the profit to obtain the total
price of the case; and third, divide the total value by the number of units (n) to get
the unit price (p).

First:

profit = 240,000,oo * 30/100
profit = $ 72,000,oo

Second:

total = $ 240,000,oo + $ 72,000,oo
total = $ 312,000,oo

Third:

p = $ 312,000,oo / 24
p = $ 13,000,oo

Finally, the selling price of each unit is $13.000.oo

Example 2: Suppose another product is purchased, with a case cost of $600,000,oo
and containing 12 units. Then we have:

First:

profit = $ 600,000,oo * 30/100
profit = $ 180,000,oo

Second:

total = $ 600,000,oo + $ 180,000,oo
total = $ 780,000,oo

71

Programming Structures

Third:

p = $ 780,000,oo / 12
p = $ 65,000,oo

The selling price of each unit is $65,000,oo

These two examples help to understand how the problem is solved. Now, it is ne-
cessary to generalize the solution process to specify an algorithm. For this, we re-
present the values with variables and the calculations with formulas applied on the-
se variables, as follows:

Let:

c = cost of the case
n = number of units
p = selling price per unit

From these data: the first two are inputs, while the last one is the output. The calcu-
lations to perform are:

profit = c * 30/100
total = c + profit
p = total / n

Having reached this point, we can now design an algorithm to solve any case of this
problem. In Table 18, the pseudocode is shown; in Figure 20, the flowchart; and in
Figure 21, the N-S diagram.

Table 18. Pseudocode to Calculate the Unit Price of a Product

1 Begin

2 Integer: n
Real: c, profit, total, p

3 Read c, n

4 profit = c * 30/100

5 total = c + profit

6 p = total / n

7 Write “Price = ”, p

8 End algorithm

72

ALGORITHM DESIGN

Figure 20. Flowchart to Calculate the Unit Price of a Product

Figure 21. N-S Diagram to Calculate the Unit Price of a Product

Begin

Integer: n
Real: c, profit, total, p

Read c, n

profit = c * 30/100

total = c + profit

p = total / n

Write “Price = ”, p

End algorithm

The data from three tests conducted to verify the correctness of this algorithm are
shown in Table 19. The first two columns correspond to the input data, and the last
one to the output generated by the algorithm.

Table 19. Verification of the Algorithm to Calculate the Unit Price of a Product

C n Profit total P Output
240,000 24 72,000 312,000 13,000 Price = 13,000

600,000 12 180,000 780,000 65,000 Price = 65,000

300,000 10 90,000 390,000 39,000 Price = 39,000

73

Programming Structures

Example 6. Area and Perimeter of a Rectangle

An algorithm is needed to calculate the area and perimeter of a rectangle of any
dimension.

To solve this problem, it is necessary to know the formulas for obtaining both the
area and the perimeter of a rectangle.

Let:

b = base
h = height

The formulas to use are:

Area = b * h
Perimeter = 2 * (b + h)

If the rectangle has a base of 10 cm and a height of 5 cm, we obtain:

Area = 10 * 5
Area = 50

Perimeter = 2 * (10 + 5)
Perimeter = 30

As seen in the example, to perform the calculations, it is necessary to have the base
and height, which correspond to the data that the user must provide and that the
algorithm must read. Meanwhile, the area and perimeter are the data that the algo-
rithm must calculate and present to the user; therefore:

Input data: base (b) and height (h)
Output data: area (a) and perimeter (p)
Processes:
a = b * h
p = 2 * (b + h)

h

b

74

Algorithm Design

The design of the solution in pseudocode notation is presented in Table 20.

Table 20. Pseudocode to Calculate the Area and Perimeter of a Rectangle

1 Begin

2 Integer: b, h, a, p

3 Read b, h

4 a = b * h

5 p = 2 (b + h)

6 Write “area:”, a

7 Write “perimeter:”, p

8 End algorithm

To verify that the algorithm is correct, we perform a step-by-step desk check as follows:

Step 2. Declare variables: b, h, a, p corresponding to: base, height, area, and perime-
ter, respectively.

Step 3. Read the base and height from the keyboard and store them in variables b
and h. Assume the values are 5 and 8

Step 4. Calculate the area, 5 * 8 = 40 (a = b * h) and store it in variable a

Step 5. Calculate the perimeter, 2 * (5 + 8) = 26 and store it in variable p

Steps 6 and 7. Display the contents of variables a and p with their respective mes-
sages.

The results of the verification with three sets of data are presented in Table 21.

Table 21. Verification of the Algorithm for Area and Perimeter of a Rectangle

Execution b h a p Output

1 5 8 40 26
area: 40
perimeter: 26

2 3 4 12 14
area: 12
perimeter: 14

3 8 4 32 24
area: 32
perimeter: 24

75

Programming Structures

Example 7. Time Dedicated to a Subject

It is known that a university professor hired on an hourly basis dedicates one hour to
preparing a two-hour class, and for every four hours of classes taught, the professor
conducts and evaluation that takes them two hours to grade. If the professor is assig-
ned a course of n hours per semester, how many hours will the professor work in total?

The best way to understand a problem is to take a specific case and develop it. As-
sume the professor has been hired for a mathematics course with a total number of
64 hours (nh) per semester.

If for every two hours of class, the professor dedicates one hour to preparation, then
the preparation time (pt) is:

pt = 64 / 2
pt = 32 hours

In general: pt = nh/2

It is also known that the professor conducts one evaluation for every four hours of
class, so we can calculate the number of evaluations (ne) the professor will perform
during the semester:

ne = 64 / 4
ne = 16

For any case: ne = nh / 4

Now, if it takes two hours to grade each evaluation, the total grading time (gt) for
the semester is:

gt = 16 * 2
gt = 32

Using variables: gt = ne * 2

Finally, to obtain the total time (tt) that the professor dedicates to the mathematics
course, we simply sum the preparation time, the time spent teaching classes, and
the grading time:

76

ALGORITHM DESIGN

tt = 32 + 64 + 32
tt = 128

That is: tt = pt + nh + gt

Thus, for a course of 64 class hours, the professor dedicates 128 hours of work. To
calculate this value for any course, it is necessary to design an algorithm that takes
the number of semester class hours as input and returns the total dedicated hours.

From this, we can deduce that:

Input: number of class hours (nh)
Output: total time dedicated (tt)
Calculations to perform:
pt = nh/2
ne = nh / 4
gt = ne * 2
tt = pt + nh + gt

The algorithm in flowchart notation is presented in Figure 22.

To ensure that the algorithm performs the calculations correctly, we test it with
three diff erent cases. The results are presented in Table 22.

Figure 22. Flowchart to Calculate the Time Dedicated to a Subject

77

Programming Structures

Table 22. Verification of the Algorithm for Time Dedicated to a Subject

Exec. nh pt ne gt tt Output
1 64 32 16 32 128 Total time = 128
2 80 40 20 40 160 Total time = 160
3 96 48 24 48 192 Total time = 192

4.1.5 Proposed Exercises

Design algorithms to solve the following problems and represent them using pseu-
docode, flowcharts, or N-S diagrams.

1. Read three grades and calculate the average

2. Calculate the area of a triangle

3. Calculate the area and perimeter of a circle

4. Calculate the volume and surface area of a cylinder

5. Given the width, length, and height of a box, calculate the volume and the
amount of paper (in cm²) needed to cover it.

6. Read an integer and separate its digits into: thousands, hundreds, tens, and
units.

7. Calculate the interest and future value of an investment with simple interest.

8. Calculate the interest and future value of an investment with compound
interest.

9. If the university finances student tuition in four equal monthly installments
with a 2% interest on the balance, given the tuition amount and the number
of installments, a student wants to know: What will be the value of each
installment? How much will they pay in total?

10. A salesperson receives a base salary plus 10% commission on their sales. If
in any given month they make three sales with values: v1, v2, and v3, how
much will they receive in commission? And how much in total?

11. A customer at a supermarket purchases n products at a unit price p. If the

78

Algorithm Design

product has a 10% discount during the season, which is applied at checkout,
what is the value of the discount? How much will they need to pay?

12. A student wants to know their final grade in Programming. This grade
consists of the average of three partial grades. Each partial grade is obtained
from a workshop, a theoretical evaluation, and a practical evaluation.
Workshops count for 25% of the partial grade, theoretical evaluations for
35%, and practical evaluations for 40%.

13. A traveler wants to know how many dollars they will receive for their capital
in pesos.

14. Bill for electricity service. The monthly consumption is determined by the
difference in readings.

15. A company’s profits are distributed among three partners as follows: Partner
A = 40%, Partner B = 25%, Partner C = 35%. Given a sum of money, how
much will each receive?

16. A store owner buys an item for x pesos and wants to achieve a 30% profit.
What will be the selling price of the item?

17. A store aims for a 30% profit on each item and offers a 15% discount on
the selling price during the season for all its products. Given the cost of a
product, calculate the selling price, ensuring that the discount can be
applied to the selling price while still achieving a 30% profit on the cost.

18. Three individuals decide to invest their money to start a business. Each
invests a different amount. Calculate the percentage each contributes
relative to the total amount invested.

19. Calculate the salary of an employee who has worked n daytime overtime
hours and m nighttime overtime hours, with daytime overtime increasing
by 25% over regular hours and nighttime overtime by 35%.

20. A student wants to know the minimum grade they must obtain on the final
evaluation in calculus after knowing their two partial grades, knowing that
the subject is passed with a 3.0, and the final grade is calculated as follows:
30% for each partial and 40% for the final.

21. Given the amount of a loan, the time, and the amount paid in interest,
calculate the interest rate applied.

79

Programming Structures

22. Knowing the time an athlete takes to complete a lap around the stadium
(400 m), estimate the time it will take to cover the 12 km required for a
competition.

23. Solve a quadratic equation (aX2 + bX + c = 0) considering that a, b, and c are
integer values that can be positive or negative.

24. Given the amount a customer pays for a product, calculate what portion
corresponds to the cost of the product and how much to VAT. Considering
that the VAT percentage can vary over time and from product to product,
this data is read from the keyboard.

25. A teacher designs a questionnaire with n questions and estimates that it
takes m minutes to grade each question. If the questionnaire is applied to
x students, how much time (in hours and minutes) will be needed to grade
all the exams?

4.2 DECISION STRUCTURES
In programming, as in real life, it is necessary to evaluate circumstances and act
accordingly, as the course of actions cannot always be predetermined. During the
execution of a program, many expressions will be subject to certain conditions;
therefore, the programmer must identify these situations and specify what to do in
each case (Timarán et al, 2009).

Every problem, whether in programming or other fields, includes a set of variables
that can take different values. The presence or absence of certain variables, as well
as their behavior, require different actions in the solution. This means that programs
are not simple sequences of instructions, but complex structures that implement
jumps and branches based on the values of the variables and the conditions defi-
ned on them.

For example, to perform a division, two variables are needed: dividend and divisor,
which can hold any integer or real number. However, division by zero is undefined,
so the condition is that the divisor must be different from zero. When implementing
this operation in a program, the restriction must be checked, and it must be deci-
ded whether to perform the calculation or display an error message. If this decision
is not implemented and the variable takes the value of zero during execution, a cal-
culation error will occur, and the execution will be interrupted.

80

Algorithm Design

Implementing a decision involves evaluating one or more variables to determine
whether they meet one or more conditions and establishing a flow of actions for
each possible outcome. Actions may consist of executing one or more expressions,
skipping them, or selecting a sequence of instructions from two or more available
alternatives.

4.2.1 Condition

In this section, the term “condition” is mentioned repeatedly, making it appropriate
to clarify its meaning. A condition is a relational or logical expression that may or
may not hold true depending on the values of the variables involved in the expres-
sion. When using a relational expression, the condition is a comparison between
two variables of the same type or a variable and a constant, while a logical expres-
sion consists of one or more relational expressions combined with logical opera-
tors: AND, OR, NOT; whose result depends on the truth table of the corresponding
operator.

Here are examples of conditions that contain relational expressions:

x = 5
y <= 10
x > y

When writing the program, the condition is specified using expressions like these,
but when it is executed, they are evaluated, and the result can be true or false de-
pending on the value of the variables. Suppose that:

x = 8
y = 9

In this case, condition (a) is not met, yielding a false result; condition (b) is met, pro-
ducing a true result; and condition (c) also returns false.

Here are some examples of conditions formed by logical expressions:

x > 0 AND x < 10
x == 5 OR y == 9
NOT(x>y)

81

Programming Structures

Condition (a) returns true if both relational expressions are true; condition (b) retur-
ns true if at least one of the relational expressions is true, and condition (c) negates
the result of the relational expression within the parentheses. If the variables have
the previously indicated values (x = 8, y = 9) condition (a) is true, condition (b) is true,
and condition (c) is true.

4.2.2 Types of Decisions
Decisions can be of three types: simple, double, and multiple.

Simple Decision: This involves deciding whether to execute or skip an instruction or
a set of instructions. In this case, it is determined what the program should do if the
condition is true, but if it is false, control simply passes to the instruction following
the decision structure.

An example of a simple decision arises when calculating the absolute value of a
number. The absolute value of a number is the same as the number itself, but if it
is negative, it must be multiplied by -1 to change its sign. Note that this operation
is only necessary for negative numbers. Simple decisions in an algorithm use the IF
statement.

Double Decision: This occurs when there are two alternatives for execution, and de-
pending on the result of evaluating the condition, one or the other is executed. If the
condition is true, the first instruction or block of instructions is executed; if false, the
second is executed.
An example of this type of decision is evaluating a grade to determine whether a
student passes or fails a subject, depending on whether the grade is greater than or
equal to 3.0.

Multiple Decision: This involves evaluating the content of a variable and executing a
sequence of actions based on its value. In this case, the set of values for the variable
must be greater than two, and only equality conditions are evaluated. Each possible
value is associated with a sequence of execution, and these are mutually exclusive.
This type of decision is implemented using the SWITCH statement.

As an example of a multiple decision, consider an algorithm that allows executing
any of the basic arithmetic operations: addition, subtraction, multiplication, and di-
vision, on a set of numbers. Upon execution, the user selects the operation, and the
algorithm performs the corresponding operation.

82

ALGORITHM DESIGN

 4.2.3 IF Structure

This instruction evaluates a logical value, a relational expression, or a logical ex-
pression and returns a logical value, based on which a simple or double decision is
made.

Simple Decision

As a simple decision, its pseudocode syntax is:

IF <condition> THEN
 Instructions
END IF

Figures 23 and 24 present its representation in flowchart and N-S notation, respectively.

Figure 23. Simple Decision in Flowchart Notation

Figure 24. Simple Decision in N-S Notation

83

Programming Structures

Example 8. Calculating the Absolute Value of a Number

The absolute value of a number is the same number for positives and the number
with its sign changed for negatives; that is, the absolute value is the distance from
0 to the number, and since distances cannot be negative, it will always be positive.

|5| = 5
|-3| = 3

The pseudocode for this exercise is presented in Table 23.

Table 23. Pseudocode to Calculate the Absolute Value of a Number

1 Begin

2 Integer: num

3 Read num

4 IF num < 0 THEN

5 num = num * -1

6 END IF

7 Write “Absolute value = ”, num

8 End algorithm

The decision structure is applied in line 4 to determine if the number is negative. If
the condition evaluates to true, line 5 is executed; if it evaluates to false, the IF struc-
ture ends, and the instruction following END IF in line 7 is executed.

If the number 5 is entered when executing this algorithm, the decision condition
will not be met, and thus the same number is written. If in a second execution the
number -3 is entered, the condition evaluates to true, so the operation within the
decision is executed: multiplying the number by -1, and finally, the number 3 is dis-
played. These results are shown in Table 24.

Table 24. Verification of the Algorithm to Calculate Absolute Value

Execution num Output
1 5 Absolute value = 5
2 -3 Absolute value = 3

Figures 25 and 26 present the flowchart and the N-S diagram, respectively.

84

ALGORITHM DESIGN

Figure 25. Flowchart for the Absolute Value of a Number

Figure 26. N-S Diagram to Calculate the Absolute Value of a Number

85

PROGRAMMING STRUCTURES

Double Decision

A double decision is implemented when there are two options to continue executing
the algorithm, and these depend on a condition; that is, there is one or more instruc-
tions for when the condition is true and another set of instructions for when it is false.
Simple decisions are used to include jumps in the execution of the algorithm or pro-
gram, while double decisions allow for branching. Its syntax in pseudocode is:

IF <condition> THEN
 Instructions_if_true
ELSE
 Instructions_if_false
END IF

Figures 27 and 28 show its representation in flowchart and N-S notation, respectively.

Figure 27. Double Decision in Flowchart Notation

Note that in pseudocode, the instruction End If is used to indicate the extent of the
conditional structure. In a flowchart, the end of the conditional is determined by
the joining of the two paths, labeled Yes and No. In the N-S diagram, the conditional
structure has two blocks: the left block contains the instructions to be executed
when the condition is met, and the right block contains the instructions to be execu-
ted when the condition is not met. The end of the conditional will be marked by the
completion of the two blocks and the continuation into a single box.

86

ALGORITHM DESIGN

Figure 28. Simple Decision in N-S Diagram Notation

Example 9. Division

As mentioned, before performing a division, it is necessary to verify that the divisor
is not zero; otherwise, a computation error will occur, and the program will termina-
te. Therefore, it is necessary to use the If statement to decide whether to perform
the division or display an error message.

The algorithm for performing a division, represented in pseudocode, is shown in Ta-
ble 25. Line 4 specifies the condition that must be met to proceed with the division.
If the condition is not met, execution jumps to the Else clause in line 7, and runs line
8, showing an error message.

Table 25. Pseudocode for Division

1 Begin

2 Integer: dividend, divisor, quotient

3 Read dividend, divisor

4 If divisor != 0 then

5 Quotient = dividend / divisor

6 Write Quotient

7 Else

8 Write “Error, divisor = 0”

9 End if

10 End algorithm

To test if the algorithm works correctly, it is executed step by step, a couple of num-
bers are entered, and the condition is verified along with the path taken depending
on it. Three tests are shown in Table 26.

87

PROGRAMMING STRUCTURES

Table 26. Verification of the Division Algorithm

Exec. Dividend Divisor Quotient Output
1 15 3 5 5

2 8 0 Error, divisor = 0

3 12 3 4 4

The solution to this exercise in flowchart notation is shown in Figure 29 and in N-S
diagram in Figure 30.

Example 10. Greater and Lesser Number

This exercise consists of reading two diff erent integers and deciding which one is
greater and which one is lesser.

To solve this exercise, it is necessary to declare two variables (x, y), input the numbers
and store them in these variables, then decide if x is greater than y or the opposite.

Figure 29. Flowchart for Division

88

ALGORITHM DESIGN

Figure 30. N-S Diagram for Division

The algorithm in example 10, in pseudocode notation, is shown in Table 27.

Table 27. Pseudocode to Identify Greater and Lesser Number

1 Begin

2 Integer: x, y

3 Read x, y

4 If x > y then

5 Write “Greater number: ”, x

6 Write “Lesser Number”, y

7 Else

8 Write “Greater number: ”, y

9 Write “Lesser number”, x

10 End if

11 End algorithm

Table 28 shows the behavior of the algorithm when tested with two data sets.

Table 28. Verification of the Greater and Lesser Number Algorithm

x y x > y Output

23 12 True
Greater number: 23
Lesser number: 12

5 11 False
Greater number: 11
Lesser number: 5

89

Programming Structures

Further examples are provided in section 4.2.6.

4.2.4 SWITCH Structure
Many decisions must be made not only between two alternatives but from a larger
set. These cases can be effectively solved using nested double decisions; however,
for the sake of clarity in the algorithm and ease for the programmer, it is better to
use a multiple decision structure, which is easy to translate into a programming lan-
guage, as these include some instruction for this purpose.

The Switch statement determines the value of a variable and, depending on this
value, follows a course of action. It is important to note that only the condition of
equality between the variable and the constant is verified. Based on Joyanes (1996),
the following syntax is proposed:

Switch <variable > do
Value_1:

Action 1
Value_2:

Action 2
Value_3:

Action 3
Value_n

Action n
Else

Action m
End switch

Since equality between the variable and constant is evaluated, all alternatives are
mutually exclusive; this means that only one set of actions can be executed. If none
of the alternatives are met due to no equality, the group of actions associated with
the Else clause will be executed. This last part is optional; if it is not present and none
of the cases are met, the execution of the algorithm will simply continue to the line
following the end switch.

In a flowchart, the multiple decision is represented by a diamond where the varia-
ble is placed, and two outputs are shown: one marked with the word If, subdivided
according to the possible values of the variable, and placed along with their corres-
ponding flow; in the other output, the word No is written along with the actions to
be taken if the value of the variable does not match any of the values established, as
shown in Figure 31.

90

ALGORITHM DESIGN

Figure 31. Multiple Decision in Flowchart Notation

In N-S diagram, it is represented by a box with an inverted triangle where the varia-
ble and the equal sign are placed, and the box is divided into as many sub-boxes as
there are alternatives for the decision, including a box for the case where the varia-
ble takes a value diff erent from those considered in the options, labeled as Other, as
shown in Figure 32.

Figure 32. Multiple Decision in N-S Notation

Example 11. Roman Numerals

This algorithm reads an Arabic number and displays its Roman equivalent, but only
considers the first 10 numbers, so if the entered number is greater than 10, it will
display the message: “Invalid number”.

Solving exercises of this type is facilitated by using the multiple decision structure,
as there is an equivalent for each value.

91

Programming Structures

The pseudocode is shown in Table 29, which shows the multiple decision structure
implemented between lines 4 and 17.

Table 29. Pseudocode for Roman Numerals

1 Begin

2 Integer: num

3 Read num

4 Switch num do

5 1: Write “I”

6 2: Write “II”

7 3: Write “III”

8 4: Write “IV”

9 5: Write “V”

10 6: Write “VI”

11 7: Write “VII”

12 8: Write “VIII”

13 9: Write “IX”

14 10: Write “X”

15 Else

16 Write “Invalid number”

17 End switch

18 End algorithm

In the pseudocode of this exercise, 10 possible values for the variable num are pro-
grammed, written after the Switch instruction, followed by a colon, with instruc-
tions specified for each value in case the content of the variable matches that value.
Finally, the Else clause accounts for any value greater than 10 or less than 1.

The flowchart and N-S diagrams are shown in Figures 33 and 34, respectively. The
diagrams show the different execution paths generated from the multiple deci-
sion structure.

92

ALGORITHM DESIGN

Figure 33. Flowchart for Roman Numerals

93

PROGRAMMING STRUCTURES

Figure 34. N-S Diagram for Roman Numerals

Table 30 shows the results of three executions with diff erent numbers.

Table 30. Verification of the Roman Numeral Algorithm

Execution num Output
1 3 III

2 9 IX

3 12 Invalid number

Example 12. Day of the Week Name

This algorithm reads a number between one and seven corresponding to the day of
the week and shows the name of the day, matching one (1) with Monday, two with
Tuesday, and so on, using the Switch statement. If the entered number is less than
one or greater than seven, it displays an error message. The pseudocode is shown in
Table 31, the flowchart in Figure 35 and the N-S diagram in Figure 36.

In this exercise, the name of the day is not written in each case of the decision; ins-
tead, a variable is declared and assigned the corresponding name (lines 5 to 11). At
the end, aft er the decision structure has closed, the name of the day is displayed
(line 15).

94

ALGORITHM DESIGN

Table 31. Pseudocode for the Day of the Week Algorithm

1 Begin

2 Integer: day
String: dayName

3 Read day

4 Switch day do

5 1: dayName = “Monday”

6 2: dayName = “Tuesday”

7 3: dayName = “Wednesday”

8 4: dayName = “Thursday”

9 5: dayName = “Friday”

10 6: dayName = “Saturday”

11 7: dayName = “Sunday

12 Else

13 dayName = “Invalid number”

14 End switch

15 Write dayName

16 End algorithm

Figure 35. Flowchart for the Day of the Week Algorithm

95

PROGRAMMING STRUCTURES

Figure 36. N-S Diagram for the Day of the Week Algorithm

Table 32 shows three cases used to verify the functioning of the algorithm.

Table 32. Verification of the Day of the Week Algorithm

Execution Day dayName Output
1 6 Saturday Saturday
2 4 Thursday Thursday
3 9 Invalid number Invalid number

 4.2.5 Nested Decisions

Nested decisions are those written within one another; meaning aft er making one
decision, another must be made. In pseudocode, nesting has the form of the struc-
ture shown in Table 33.

96

Algorithm Design

If condition-1 is true, condition-2 is evaluated, and if this is also true, instructions-1
are executed. Thus, instructions-1 are executed only if condition-1 and condition-2
are true; instructions-2 are executed if condition-1 is true and condition-2 is false.

Table 33. Nested Decisions

If <condition 1> then
If <condition 2> then
 Instructions 1
 Else

If <condition 3> then
 Instructions 2

Else
Instructions 3

End if
End if

Else
If <condition 4> then

 Instructions 4
Else

Instructions 5
End if

End if

When the second decision is written for the case where the first is true, it is said to be
nested by true, as occurs with condition-2. If the second decision is evaluated when
the first decision is not fulfilled, it is said to be nested by false. Both true and false
decisions can be nested as needed.

Nesting can be done with the If structure similarly with the Switch structure, and
the two can be combined: an If within a Switch or otherwise, as many levels as the
solution of the problem requires.

The representation in a flowchart is shown in Figure 37. In this type of diagram, it is
easy to see the nesting of decisions and understand the dependence of the opera-
tions with respect to the decisions; one only needs to evaluate the condition and
follow the corresponding arrow.

97

PROGRAMMING STRUCTURES

Figure 37. Flowchart for Nested Decisions

The N-S Diagram may seem complicated, but it is not; just read one box at a time,
from top to bottom and left to right (see Figure 38) Condition 1 sets two paths; fo-
llowing the left one leads to Condition 2, which also provides two paths. If Condition
1 is false, the right path is taken and leads to Condition 3, which also provides two
paths to follow, depending on the result of the condition.

Figure 38. N-S Diagram for Nested Decisions

Example 13. Comparing Two Numbers

Given two integers, they can be equal or diff erent. If they are diff erent, which one is
greater? And which one is smaller?

98

Algorithm Design

In this case, two numbers are read from the keyboard and stored in two variables:
n1 and n2.

The algorithm requires two decisions, the first being given by the condition:

n1 = n2 ?

If this condition is true, it displays a message. If not, another decision must be made
based on the condition:

n1 > n2 ?

If this condition is true, it will show a result; if false, another result will be shown.

Table 34 presents the solution in pseudocode notation; the flowchart and N-S dia-
grams are shown in Figures 39 and 40.

 Table 34. Pseudocode for Number Comparison Algorithm

12 Begin

3 Integer: n1, n2

4 Read n1, n2

5 If n1 = n2 then

6 Write “Numbers are equal”

7 Else

8 If n1 > n2 then

9 Write n1, “Greater”

10 Write n2, “Smaller”

11 Else

12 Write n2, “Greater”

13 Write n1, “Smaller”

14 End if

15 End if

16 End algorithm

Three tests are performed to verify the correctness of the algorithm. In the first exe-
cution, the number 3 is entered for both variables; thus, evaluating the first con-
dition (line 4) yields true, and the message “Numbers are equal” is displayed (line
5). In the second execution, the numbers 5 and 2 are entered; this time, the first

99

PROGRAMMING STRUCTURES

condition is not met, and execution continues to line 7, where another condition is
met, leading to lines 8 and 9 being executed. In the third execution, the numbers 6
and 8 are entered; when evaluating the first condition, it is not met, jumping to line
7 and evaluating the second condition, which is also false, leading to lines 11 and 12
being executed.

Figure 39. Flowchart for Number Comparison Algorithm

100

ALGORITHM DESIGN

Figure 40. N-S Diagram for Number Comparison Algorithm

The results obtained from the algorithm tests are shown in Table 35.

Table 35. Pseudocode for Number Comparison Algorithm

Execution n1 n2 Output
1 3 3 Numbers are equal

2 5 2
5 Greater
2 Smaller

3 6 8
8 Greater
6 Smaller

Example 14. Calculate Salary Increase

The company La Generosa S.A wants to increase salaries for its employees, having
established the following conditions: those earning up to $800,000 will receive a 10%
increase, those earning more than $800,000 and up to $1,200,000 will receive an 8%
increase, and those earning more than that will receive a 5% increase. An algorithm
is required to calculate the increase amount and the new salary for each employee.

To understand the problem, consider the following cases:

101

Programming Structures

An employee earns $700,000; since this amount is below $800,000, they will receive
a 10% increase, therefore:

Increase = 700,000 * 10 / 100 = 70,000
New salary = 700,000 + increase
New salary = 770,000

Another employee earns $1,000,000; this amount is above $800,000 but below
1,200,000; therefore, they will receive an 8% increase:

Increase = 1,000,000 * 8 / 100 = 80,000
New salary = 1,000,000 + increase
New salary = 1,080.000

A third employee earns $1,500,000; since this amount is above $1,200,000, the in-
crease percentage is 5%:

Increase = 1,500,000 * 5 / 100 = 75,000
New salary = 1,500,000 + increase
New salary = 1,575,000

It follows that:

Inputs: salary (sal)
Outputs: increase amount (inc) and new Salary (newSal)
Calculations: increase = salary * percentage (per)
new salary = salary + increase

The solution design in pseudocode notation is presented in Table 36.

Table 36. Pseudocode for Salary Increase Algorithm

1 Begin

2 Real: sal, per, inc, newSal

3 Read sal

4 If sal <= 800000 then

5 per = 10

6 Else

7 If sal <= 1200000 then

102

ALGORITHM DESIGN

8 per = 8

9 Else

10 per = 5

11 End if

12 End if

13 inc = Sal * per /100

14 newSal = Sal + inc

15 Write “Increase:”, inc

16 Write “New salary:”, newSal

17 End algorithm

The flowchart is presented in Figure 41 and the N-S diagram in Figure 42.

Figure 41. Flowchart for Salary Increase Algorithm

103

PROGRAMMING STRUCTURES

Figure 42. N-S Diagram for Salary Increase Algorithm

To verify that the algorithm works correctly, tests are conducted with the previously
analyzed data. The results of this test are shown in Table 37.

Table 37. Verification of the Salary Increase Algorithm

Exec. Sal per inc newSal Output

1 700,000 10 70,000 770,000
Increase: 70,000
New salary: 770,000

2 1,000,000 8 80,000 1,080,000
Increase: 80,000
New salary: 1’080.000

3 1,500,000 5 75,000 1,575,000
Increase: 75,000
New salary: 1,575.000

4.2.6 More Examples of Decisions

Example 15. Recruitment

A company wants to hire a professional to fill a vacancy. The requirements to be
considered eligible are: being a professional and being between 25 and 35 years old

104

Algorithm Design

inclusive, or having a postgraduate degree, in which case age is not taken into ac-
count. An algorithm is required to evaluate each candidate’s data and inform whe-
ther they are suitable or not.

Following the strategy proposed in this document, particular cases are analyzed,
data and operations are identified, and then a generic solution is designed.

Pedro applies for the position. He has a bachelor’s degree in business administra-
tion and is 28 years old. Comparing his data with the problem’s conditions, we find
that his age falls within the valid range and he has a bachelor’s degree; therefore, he
is considered suitable.

Next, Lucía applies, who is a public accountant with a specialization in senior mana-
gement and is 38 years old. Upon reviewing the conditions, we find that her age is
outside the range, but since she has a specialization, she is categorized as suitable.

Finally, Carlos, who is 45 years old and has a bachelor’s degree in economics, applies.
Examining the first condition, we see that his age exceeds the established limit. This
situation could be ignored if he had specialized training, but it is verified that his
level of education is a bachelor’s degree; therefore, he is declared unsuitable.

Now, we need to design an algorithm that automatically determines whether any
person meets the requirements.

In this case, three input data points are required: name, age, and academic back-
ground. To minimize the possibility of error when entering the third data point, a
menu is presented from which the user selects the corresponding option:

Academic Background

1. Technological
2. Professional
3. Specialist
4. Master’s
5. Doctorate

In this way, the condition is set on numerical data. The algorithm to solve this pro-
blem is presented as a flowchart in figure 43.

The results of the algorithm verification are shown in Table 38.

105

PROGRAMMING STRUCTURES

Table 38. Verification of the Recruitment Algorithm

Exec. Name Age Studies Output
1 Peter 28 2 Peter is suitable

2 Lucia 38 3 Lucia is suitable

3 Carlos 45 2 Carlos is not suitable

Figure 43. Flowchart for Employee Selection

106

Algorithm Design

Example 16. Transportation Allowance

An algorithm is required to decide whether an employee is entitled to transporta-
tion allowance. It is known that all employees earning a salary less than or equal to
two minimum legal wages (SML in Spanish) are entitled to this benefit.

To identify the data of the problem and the solution, two examples are proposed:

Assume a legal minimum wage of $600,000.oo. José earns a monthly salary of
$750,000.oo. The problem states that he is entitled to allowance if his salary is less
than or equal to twice the legal minimum wage; thus:

750,000,oo <= 2 * 600,000,oo
750,000,oo <= 1,200,000,oo

This relational expression is true; therefore, José is entitled to transportation
allowance.

Luis earns $1,300,000.oo monthly. Is he entitled to allowance?

1,300,000,oo <= 2 * 600,000,oo
1,300,000,oo <= 1,200.000,oo

The condition is not met; consequently, Luis does not receive transportation
allowance.

The design of the solution to this problem is proposed through the N-S diagram in
Figure 44.

107

PROGRAMMING STRUCTURES

Figure 44. N-S Diagram of the Transportation Allowance Algorithm

The results of the verification of this algorithm, with the proposed examples, are
shown in Table 39.

Table 39. Verification of the Transportation Allowance Algorithm

Exec. SML Name Salary Salary <=
2 * SML Output

1 515,000 José 750,000 True
José receives
transportation
allowance

2 515,000 Luis 1,200,000 False
Luis does NOT receive
transportation
allowance

Example 17. Final Grade

At Buena Nota University, an algorithm is required to calculate the final grade and
decide whether the student passes or fails the course. The final grade is obtained
from two partial grades and a final exam, where the first partial is worth 30%, the
second partial is worth 30%, and the final exam is worth 40%. The minimum pas-
sing grade is 3.0.

If the average of the two partial grades is less than 2.0, the student cannot take the
final exam and fails the course due to low average; in this case, the final grade is the

108

Algorithm Design

average of the partial grades. If the average is equal to or greater than 2.0, the stu-
dent can take the final exam.

If the final exam score is less than 2.0, the partial grades are disregarded, and the
final grade is the score obtained in the final exam. If the score is equal to or greater
than 2.0, the final grade is calculated using the above percentages for the partial
grades and the final exam.

If the final grade is equal to or greater than 3.0, the student passes the course; if it
is below 3.0, they fail; however, they can retake it, provided they score at least 2.0
on the final exam. In this case, the final grade will be the one obtained in the retake.

To better understand this situation, consider the following cases:

Raúl obtained the following grades:

Partial grade 1 = 2.2
Partial grade 2 = 1.6
Average = 1.9
Final grade = 1.9

Following the information of the problem, Raúl cannot take the final exam since the
average of the two partial grades is less than 2.0; consequently, the final grade is the
average of the partial grades, and he cannot take the final exam or retake. He fails
the course.

Karol obtained the following grades:

Partial grade 1 = 3.4
Partial grade 2 = 2.0
Average = 2.7

She can take the final exam

Final exam = 1.5

Since her final exam score is less than 2.0, it becomes the final grade, and she cannot
retake.

109

Programming Structures

Carlos’s grades were:

Partial grade 1 = 3.5
Partial grade 2 = 2.5
Average = 3.0

He can take the final exam

Final exam = 2.2

Final grade = 3.5 * 30% + 2.5 * 30% + 2.2 * 40% = 2.7

Carlos does not pass the course, but since he has a score greater than 2.0 on the
final exam, he can retake

Retake = 3.5
Final grade = 3.5. Passes the course

Ana, on the other hand, obtained the following grades:

Partial grade 1 = 3.7
Partial grade 2 = 4.3

Average = 4.0

She takes the final exam

Final exam = 3.5

Final grade = 3.8

Therefore, Ana passes the course.

Now that the problem is well understood, an algorithm can be designed to solve any
case. This algorithm is presented in Table 40.

110

Algorithm Design

Table 40. Pseudocode for Final Grade Algorithm

1 Begin

2 Real: p1, p2, fe, fg, aver, rg

3 Read p1, p2

4 aver = (P1 + P2)/2

5 If aver < 2.0 then

6 fg = aver

7 Write “fails the course due to low average”

8 Else

9 Read fe

10 If fe < 2.0 then

11 fg = fe

12 Write “Fails the course and cannot retake”

13 Else

14 fg = p1 * 0.3 + p2 * 0.3 + fe * 0.4

15 If fg >= 3.0 then

16 Write “Passed the course”

17 Else

18 Write “Failed the course but can retake”

19 Read rg

20 fg = rg

21 If rg >= 3.0 then

22 Write “Passed the retake”

23 Else

24 Write “Failed the retake”

25 End if

26 End if

27 End if

28 End if

29 Write “Final grade:”, fg

30 End algorithm

In this algorithm, variables are declared to store the two partial grades, the average,
the final exam, the final grade, and the retake grade. To start, the two partial grades
are read, the average is calculated, and it is evaluated (line 5). If it is below 2.0, it is
assigned to the final grade, a message is displayed, and the algorithm ends.

111

Programming Structures

If the average is above 2.0, the final exam is read and evaluated (line 10). If it is less
than 2.0, it is assigned as the final grade, a message is displayed, and it jumps to the
end of the algorithm. If the final exam is greater than 2.0, the final grade is calculated,
and it is determined whether the student passes or fails. If they fail, they can take the
retake, which is the last chance to pass the course.

Table 41 shows three sets of data to test the algorithm and the results obtained.

Table 41. Verification of the Final Grade Algorithm

Exec P1 P2 Aver fe fg rg Output

1 2.2 1.6 1.9 - 1.9
Failed the course due to low
average
Final grade: 1.9

2 3.4 2.0 2.7 1.5 1.5
Failed the course
Final grade: 1.5

3 3.5 2.5 3.0 2.2 2.7 3.5

Failed the course but can
retake
Passed the retake
Final grade: 3.5

4 3.7 4.3 4.0 3.5 3.8
Passed the course
Final grade: 3.8

Example 18. Oldest Sibling

This algorithm reads the names and ages of three siblings and decides which sibling
is the oldest.

Let’s consider the following cases:

José, Luis, and María are siblings; José is 19 years old, Luis is 15, and María is 23. Who
is the oldest? Clearly, it is Maria.

Carlos is 32, Rocío is 28, and Jesús is 25. In this case, Carlos is the oldest.

Martha is 8 years old, Ana is 10, and Camilo is 4. Among the three, Ana is the oldest.

Now, we need to design an algorithm for a computer program to make this decision.
We need to declare three string variables and relate them to three numeric variables,

112

ALGORITHM DESIGN

so the ages are compared, and the name is shown as a result. The flowchart for this
algorithm is presented in Figure 45.

To verify that the algorithm is correct, we review it step by step, recording the values
corresponding to the variables and the output on the screen. Table 42 shows the
test data and the results obtained.

Figure 45. Flowchart of the Oldest Sibling Algorithm

113

Programming Structures

Table 42. Verification of the Oldest Sibling Algorithm

Exec. name1 age1 name2 age2 name3 age3 Output

1 José 19 Luis 15 Maria 23 Maria

2 Carlos 32 Rocío 28 Jesús 25 Carlos

3 Martha 8 Ana 10 Camilo 4 Ana

Example 19. Wholesale Discount

Gran Distribuidor warehouse sells shirts in bulk and offers discounts based on the
quantity purchased: for quantities of 1000 units or more, a 10% discount is applied;
for quantities between 500 and 999, an 8% discount; between 200 and 499, a 5%
discount; and for fewer than 200 units, there is no discount. Given the quantity pur-
chased and the unit price, an algorithm is needed to calculate the discount provided
to a customer and the amount to pay.

Before proceeding with the algorithm design, it is useful to understand the problem
through a particular case for calculations.

If a shirt costs $80,000 and a customer orders 350 units, they are entitled to a 5%
discount:

Units: 350
Unit price: 80,000
Total value = 350 * 80,000 = 28,000,000
Discount percentage: 5%
Discount value = 28,000,000 * 5 / 100 = 1,400,000
Amount payable = 28,000,000 – 1,400,000 = 26,600,000

In this case, the customer will receive a discount of $1,400,000 and will pay a total of
$26,600,000.

Now, we can identify the input data, output data, and the processes to be performed:
Input: quantity, unit price
Output: discount value, amount payable
Processes:

Total = quantity * unit price
Discount value = total * discount percentage / 100
Amount payable = total - discount

The solution is presented by N-S diagram in Figure 46.

114

ALGORITHM DESIGN

Figure 46. N-S Diagram of the Wholesale Discount Algorithm

Table 43 shows the test data for this algorithm.

Table 43. Verification of the Wholesale Discount Algorithm

Exec. qty unpri tval dper dval apay Output

1 350 80000 2800000 5 1400000 26600000
Discount
1400000
Pay 26600000

2 600 20000 12000000 8 960000 11040000
Discount
960000
Pay 11040000

3 1100 30000 3300000 10 3300000 29700000
Discount
3300000
Pay 29700000

115

Programming Structures

Example 20. Term Deposit

Buena Paga bank offers different annual interest rates for term deposits depending
on the duration. If the deposit is for a period of six months or less, the rate is 8%
per year; between seven and 12 months, 10%; between 13 and 18 months, 12%;
between 19 and 24 months, 15%; and for periods longer than 24 months, 18%. An
algorithm is required to determine how much a customer will receive for a deposit,
both in terms of interest and total amount.

Let’s consider some specific cases:

Case 1: Pedro Pérez makes a deposit of one million pesos ($1,000,000.oo) for five
months. According to the information provided in the problem statement, the bank
will pay him an interest rate of 8% per year.

Since the interest rate is expressed annually and the deposit is in months, we first
need to convert it to a monthly rate by dividing by 12.

Monthly interest rate = 8 / 12
Monthly interest rate = 0.667

Now, we have the following data:

Capital = 1000000.oo
Time = 5
Monthly interest rate = 0.667%

To find out how much he will receive in interest, we apply the percentage obtained
to the capital value and multiply by the number of periods (in this case, five months):

Interest = 1000000.oo * (0.667 / 100) * 5
Interest = 33350

To obtain the future value of the investment, interest is added to the capital:

Future value = 1000000 + 33350
Future value = 1033350

116

Algorithm Design

Case 2: José López wants to deposit five million for a period of one and a half years
(18 months). In this case, the bank offers him an interest of 12% per year.
The monthly interest rate converted is:

Monthly interest rate = 12 / 12 = 1

So, the data is:

Capital = 5000000
Monthly interest rate = 1 %
Time = 18

From which we obtain:
Interest = 5000000 * (1 / 100) * 18
Interest = 900000

Future value = capital + interest
Future value = 5000000 + 900000
Future value = 5900000

Based on the two examples, we conclude that:

Input data: capital, time
Output data: interest, future value
Processes:

Determine the annual interest rate (is a decision)
Monthly interest = annual interest rate / 12
Interest = capital * monthly interest rate / 100 * time
Future value = capital + interest

The algorithm to solve this exercise is presented in pseudocode in Table 44.

This algorithm uses nested if decision structures to determine the percentage co-
rresponding to the annual interest rate, depending on time. Nested decisions are
applied rather than a Switch structure since the latter can only evaluate the condi-
tion of equality between the content of the variable and a constant value, not for
relationships of greater or lesser value.

Table 45 shows the results of verifying the algorithm with the data used in the two
examples at the beginning of this exercise, plus a third case with a value of 8000000
over 36 months.

117

Programming Structures

Table 44. Pseudocode for Term Deposit Algorithm

1 Begin

2 Real: capital, annualIntRate, monthIntRate, interest, futureValue

3 Integer: time

4 Read capital, time

5 If time < 1 then

6 Write “Invalid time”

7 annualIntRate = 0

8 Else

9 If time <= 6 then

10 annualIntRate = 8

11 Else

12 If time <= 12 then

13 annualIntRate = 10

14 Else

15 If time <= 18 then

16 annualIntRate = 12

17 Else

18 If time <= 24 then

19 annualIntRate = 15

20 Else

21 annualIntRate = 18

22 End if

23 End if

24 End if

25 End if

26 End if

27 monthIntRate = annualIntRate / 12

28 Interest = Capital * monthIntRate / 100 * Time

29 futureValue = capital + interest

30 Write “Interest = ”, interest

31 Write “Future value = ”, futureValue

32 End algorithm

118

Algorithm Design

Table 45. Verification of the Term Deposit Algorithm

Capital Time annualIntRate monthIntRate interest Future value
1000000 5 8 0,667 33350 1033350

5000000 18 12 1 900000 5900000

8000000 36 18 1,5 4320000 12320000

Example 21. Publishing Company

A publishing company has three groups of employees: salespeople, designers, and
administrative staff. It is required to calculate the new salary for employees, con-
sidering the following increases: administrative staff 5%, designers 10%, and sa-
lespeople 12%.

As a particular case, we will calculate the new salary for the secretary, who currently
earns $600,000.oo. Since her position is classified as administrative, she will receive
a 5% increase.

Position: Secretary
Job Type: administrative
Current Salary: 600,000.oo
Increase Percentage: 5%

Thus,

Increase Amount: 30,000.oo
New Salary: 630,000.oo

In this exercise, the current salary and job type (administrative, designer, salesper-
son) are taken as input data, since the increase percentage depends on the job type
and is applied to the current salary. The algorithm to solve this problem is presented
in flowchart notation in Figure 47.

In this algorithm, three real-type variables are declared for the current salary, new
salary, and increase percentage, and an integer variable is used to capture the op-
tion corresponding to the employee’s job type. A (multiple) decision is made based
on the job type and the percentage to be applied is established, the calculation is
made, and the new salary is shown. If the selected job type option is not between 1
and 3, an error message is displayed.

119

PROGRAMMING STRUCTURES

Three sets of data are proposed to verify if the algorithm is correct. The results of the
executions are presented in Table 46.

Figure 47. Flowchart for Publishing Company Algorithm

Table 46. Verification of the Publishing Company Algorithm

Exec. JobType CurrentSalary Pct NewSalary Output
1 1 600,000 0.05 630,000 New salary = 630,000
2 2 800,000 0.1 880,000 New salary = 880,000
3 3 700,000 0.12 784,000 New salary = 784,000
4 4 500,000 Invalid job

120

Algorithm Design

Example 22. Motorcycle Discount

The motorcycle distributor Rueda Floja offers a promotion as follows: Honda mo-
torcycles have a 5% discount, Yamaha motorcycles have an 8% discount, Suzuki
motorcycles have a 10% discount, and motorcycles from other brands have a 2%
discount. It is required to calculate the amount to be paid for a motorcycle.

Let’s consider some examples of this problem.

Pedro wants to buy a Honda motorcycle priced at six million pesos. How much does
he really have to pay for that motorcycle?

In the problem description, it is said that this type of motorcycle has a 5% discount,
so we need to calculate the discount amount for the motorcycle Pedro wants. We
have the following data:

Motorcycle price = 6,000,000,oo
Discount percentage = 5/100 (5%)
Discount amount = 6,000,000,oo * 5 / 100 = 300,000,oo
Net amount = 6,000,000,oo – 300,000,oo = 5,700,000,oo

Since the motorcycle Pedro wants has a 5% discount, the net amount to be paid is
$ 5,700,000,oo.

Juan wants to buy a Yamaha motorcycle with a list price of $8,500,000,oo. Since this
brand has an 8% discount, we have:

Motorcycle price = 8,500,000,oo
Discount percentage = 8/100 (8%)
Discount amount = 8,500,000,oo * 8 / 100 = 680,000,oo
Net amount = 8,500,000,oo – 680,000,oo = 7,820,000,oo

Therefore, Juan must pay the sum of $7,820,000,oo for the Yamaha motorcycle.
Based on the previous examples, we can generalize the procedure as follows:

Discount percentage = depends on the brand (5%, 8%, 10%, or 2%)
Discount amount = motorcycle price * discount percentage
Net amount = motorcycle price – discount amount

121

PROGRAMMING STRUCTURES

Consequently, the data to be entered corresponds to: the list price and the brand of
the motorcycle. The algorithm that solves this problem is presented in N-S notation
in Figure 48.

Figure 48. Motorcycle Discount

To verify that the algorithm is correct, the desk checking is performed considering
each of the decision alternatives, as shown in Table 47.

Example 23. Sales Commission

The V&V company pays its salespeople a base salary plus a commission on sales
made during the month, provided that these exceed $1,000,000. The commission
percentages are:

122

Algorithm Design

Sales greater than $1,000,000 and up to $2,000,000 = 3%
Sales greater than $2,000,000 and up to $5,000,000 = 5%
Sales greater than $5,000,000 = 8%
The goal is to determine how much commission the salesperson is entitled to and
what their total earnings will be for the month.

Following the approach proposed for this book, the first thing is to consider some
examples to understand the problem and how to solve it. In this order of ideas, four
examples are proposed:

Table 47. Verification of the Motorcycle Discount Algorithm

Exec. Brand price disper disamou netamou Output

1 Honda 6,000,000 5 300,000 5,700,000

Motorcycle: Honda
Price: 6,000,000
Discount amount:
300,000
Amount payable:
5,700,000

2 Yamaha 8,500,000 8 680,000 7,820,000

Motorcycle: Yamaha
Price: 8,500,000
Discount amount:
680,000
Amount payable:
7,820,000

3 Suzuki 3,800,000 10 380,000 3,420,000

Motorcycle: Suzuki
Price: 3,800,000
Discount amount:
380,000
Amount payable:
3,420,000

4 Kawasaki 5,000,000 2 100,000 4,900,000

Motorcycle: Kawasaki
Price: 5,000,000
Discount amount:
100,000
Amount payable:
4,900,000

Jaime was hired with a base salary of $600,000,oo and during the last month, he
sold $1,200,000,oo. Since he sold more than one million, he is entitled to a commis-
sion. The next step is to determine which percentage applies. The exercise states

123

Programming Structures

that if sales are between one and two million, the salesperson receives a commis-
sion of 3% on the sales value. This is calculated as follows:

Salesperson: Jaime
Base salary: 600,000,oo
Sales value: 1,200,000,oo
Commission percentage: 3%
Commission value = 1,200,000 * 3 / 100 = 36,000
Monthly salary = 600,000 + 36,000 = 636,000

Jaime will receive $36,000 in commission, resulting in a total salary of $636,000,oo

Susana has a base salary of $700,000,oo her sales for the last month amounted to
$3,500,000,oo. In this case, according to the problem’s requirements, she is entitled
to a 5% commission. The results for Susana are:

Salesperson: Susana
Base salary: 700,000,oo
Sales value: 3,500,000,oo
Commission percentage: 5%
Commission value = 3,500,000 * 5 / 100 = 175,000
Monthly salary = 700,000 + 175,000 = 875,000

Susana earns a commission of $175,000, resulting in a total salary of $875,000.oo.
Carlos has a base salary of $600,000,oo and his sales last month totaled $950,000,oo.
Since he did not reach one million in sales, he will not receive a commission.

Salesperson: Carlos
Base salary: 600,000,oo
Sales value: 950,000,oo
Commission percentage: None
Commission value = None
Monthly salary = 600,000

Carlos only receives his base salary.

Rocío is known as the company’s top seller, with a base salary of $800,000,oo. In the
last month, she managed to sell seven million pesos.

124

Algorithm Design

Salesperson: Rocío
Base salary: 800,000,oo
Sales value: 7,000,000,oo
Commission percentage: 8%
Commission value = 7,000.000 * 8 / 100 = 560,000
Monthly salary = 800,000 + 560,000 = 1,360,000

Rocío receives a commission of $560,000,oo and a total salary of $1,360,000,oo
From the previous examples, the input data and the calculations to be performed
are identified. The output data specified by the problem statement includes the sa-
lesperson, commission, and total salary. The algorithmic solution is presented in
Table 48 in pseudocode notation.

Input Data:
Salesperson’s name
Base salary
Sales value
Calculations to Perform:
Commission value = sales value * commission percentage (3, 5, 8) / 100
Monthly salary = base salary + commission value

To verify that the algorithm works correctly, the pseudocode is executed step by
step using the data of the previously explained examples, for which the calculations
and results are already known. The results are presented in Table 49.

Table 48. Sales Commission Algorithm

1 Begin

2 String: name

3 Real: basesal, sale, comper, comval, monthsal

4 Read name, basesal, sale

5 If sale > 1000000 then

6 If sale <= 2000000 then

7 comper = 3

8 Else

9 If sale <= 5000000 then

10 comper = 5

11 Else

12 comper = 8

125

Programming Structures

13 End if

14 End if

15 Else

16 comper = 0

17 End if

18 comval = sale * comper / 100

19 monthsal = basesal + comval

20 Write “Salesperson:”, name

21 Write “Commission:”, comval

22 Write “Total salary:”, monthsal

23 End algorithm

Table 49. Verification of the Sales Commission Algorithm

Name basesal Sale comper comval monthsal Output

Jaime 600000 1200000 3 36000 636000
Salesperson: Jaime
Commission: 36000
Total salary: 636000

Susana 700000 3500000 5 175000 875000
Salesperson: Susana
Commission: 175000
Total salary: 875000

Carlos 600000 950,000 0 0 600000
Salesperson: Carlos
Commission: 0
Total salary: 600000

Rocío 800000 7000000 8 560000 1360000
Salesperson: Rocío
Commission: 560000
Total salary: 1360000

Example 24. Electric Service Billing

An algorithm is required to bill the electric power service. The monthly consumption
is determined by the difference in readings. The value per kilowatt (kW6) is the same
for all users, but a discount is applied based on socioeconomic strata as follows:

Stratum 1: 10%

6 kW is the kilowatt symbol. A kilowatt is a unit of measurement of electricity equivalent to 1000

watts. It is also equivalent to the energy produced or consumed by a power of one kW for one hour.

126

Algorithm Design

Stratum 2: 6%
Stratum 3: 5%

Additionally, a 2% discount is applied to all strata if consumption exceeds 200 kW.
The program should display the consumption and the amount to be paid for this
service. (This exercise is purely educational and has no relation to actual billing
practices).

In a real company, records of readings are maintained, so only one reading is ne-
cessary and it is compared with the last stored value. However, for this exercise,
both readings must be taken to calculate the difference. To better understand this
approach, let’s consider the following examples:

José is a user of the energy service residing in stratum 1. Last month, his meter re-
gistered 12345, and this month it registered 12480. Since he is in stratum 1, he will
receive a 10% discount. If the value of kW is $500, the consumption and amount to
be paid are calculated as follows:

User: José
Reading 1: 12345
Reading 2: 12480
Consumption: 12480 – 12345 = 135
Value per kW: 500
Value of consumption: 67500
Stratum: 1
Discount percentage: 10%
Discount value = 67500 * 10 / 100 = 6750
Amount payable = 67500 – 6750 = 60750

From this example, we can identify the necessary data and processes to solve the
exercise. The input data includes:

User,
Socioeconomic stratum,
Reading 1,
Reading 2 and
Value per kW.

(Universal Encyclopedia Circle)

127

Programming Structures

The discount percentage to be applied is based on the user’s socioeconomic stra-
tum. The values to be calculated are:

Consumption = reading 2 – reading 1
Value of consumption = consumption * value per kW
Discount value = value of consumption * discount percentage / 100
Amount payable = value of consumption – value discounted

The next step is to organize the actions algorithmically. The flowchart of the solu-
tion to this exercise is presented in Figure 49.
To verify that the solution is correct, the algorithm is executed step by step, using
the data from the analysis, and the results generated by the algorithm are compared
with the manually obtained results.

Example 25. Calculator

This algorithm reads two numbers and an arithmetic operator, applies the corres-
ponding operation, and displays the operation name and result.

In this case, it is necessary to identify the operator entered by the user and perform
the corresponding operation. The arithmetic operators to consider are:

+ addition
- subtraction
* multiplication
/ division

For example:

First number: 3
Second number: 4
Operator: +

128

ALGORITHM DESIGN

Figure 49. Electric Service Billing

The algorithm should perform the addition and display the result as follows:

129

PROGRAMMING STRUCTURES

Addition: 3 + 4 = 7
Another example:
First number: 6
Second number: 2
Operator: -

The result will be:

Subtraction: 6 – 2 = 4

The algorithm to solve this exercise requires a multiple decision applied to the ope-
rator, where each decision alternative performs the corresponding operation and
displays the result. The N-S diagram of this algorithm is presented in Figure 50.

The variables declared are: a, b, and r for first number, second number, and result,
and ope for the operator. During the verification of the algorithm, all operators are
tested, and the results are shown in Table 50.

Figure 50. N-S Diagram of the Calculator Algorithm

130

Algorithm Design

Table 50. Verification of the Calculator Algorithm

Exec. a b ope r Output
1 3 4 + 7 Addition: 3 + 4 = 7

2 6 2 - 4 Subtraction: 6 – 2 = 4

3 2 5 * 10 Multiplic: 2*5=10

4 27 9 / 3 Division: 27/9 = 3

5 8 7 X Invalid Operator

4.2.7 Proposed Exercises

Design algorithms to solve the following problems and represent them using pseu-
docode, flowcharts, and N-S diagrams.

To be selected for the basketball team, in addition to being a good player, a mini-
mum height of 1.70 m is required. Given the height of an applicant, decide if they
are eligible.

1. Given two integers, determine if one of them is a multiple of the other.

2. Given two rational numbers a/b and d/e, determine if they are equivalent; if not,
identify which one is greater and which is smaller.

3. A company pays a bonus to its employees based on their length of service and
marital status: for single employees: if they have up to five years, they receive 2%
of their salary; between 6 and 10 years, 5%; and more than 10 years, 10%. For
married employees: if they have up to 5 years, they receive 5% of their salary;
between 6 and 10 years, 10%; and more than 10 years, 15%.

4. A store offers an 8% discount to customers whose purchase exceeds $1,000,000
and a 5% discount if the purchase is greater than $500,000 but less than or equal
to $1,000,000. How much will a person pay for their purchase?

5. A year is a leap year if it is divisible by four and not by 100, or if it is divisible by
400. Determine if a given year n is a leap year.

6. An algorithm is required that reads three numbers and sorts them in ascending
order.

7. Given a cylindrical container with radius r and height h, and a box with width a,
length b, and height c, determine which one has a greater storage capacity.

131

Programming Structures

8. A supermarket offers a 10% discount for the purchase of 10 or more units of the
same item. How much will a customer have to pay for their purchase?

9. An insurance company opened a new agency and established a program to
attract clients. If the amount for the insurance contract is less than $5,000,000,
a 3% fee is charged; if the amount is between $5,000,000 and $20,000,000, a 2%
fee is charged; and if the amount is $20,000,000 or more, a 1.5% fee is charged.
What will be the value of the policy?

10. ABC University has a scholarship program for students with good academic
performance. If the average of the four subjects taken each semester is greater
than or equal to 4.8, the student does not have to pay tuition for the next
semester; if the average is greater than or equal to 4.5 and less than 4.8, the
student will receive a 50% discount; for averages greater than or equal to 4.0
and less than 4.5, the fee remains the same; and for averages below 4.0, it
increases by 10% compared to the previous semester. Given the final grades,
determine the tuition fee for the next semester.

11. A computer distributor offers discounts based on the quantity purchased. For
purchases of less than five units, there is no discount; for purchases of five to
nine units, a 5% discount is applied; and for purchases of 10 or more units, a
10% discount is applied. What will be the value of the discount? How much will
the customer pay?

12. A restaurant offers home delivery under the following conditions: if the order
exceeds $20,000, there is no additional delivery charge; if it is greater than
$10,000 and up to $20,000, a $2,000 charge will be applied; and if it is less than
$10,000, a $4,000 charge will be applied. What amount should the customer
pay?

13. A distributor has three salespeople who receive a base salary plus a 5%
commission on sales, provided that the sales amount is greater than or equal
to $1,000,000. Additionally, the salesperson with the highest sales for the
month will receive an additional 2% commission on their sales, regardless of
the amount. What will be the salary of each salesperson?

14. In a job interview, the following criteria are taken into account: formal education,
age, and marital status. The scores are as follows: for ages 18-24 years, 10
points; for ages 25-30, 20 points; for ages 31-40, 15 points; and for those over 40,
8 points. For high school education, 5 points; for technical education, 8 points;
for college degrees, 10 points; and for postgraduate degrees, 15 points. Marital
status: single 20 points, married 15 points, common-law 12 points, separated
18 points. Calculate the total score for an interviewee.

132

Algorithm Design

15. Given a year and a month, determine how many days that month has, considering
that February changes depending on whether the year is a leap year.

16. Given an integer between 1 and 9999, express it in words

17. A jewelry store sets the price of its products based on weight and material. An
algorithm is required that reads a reference value x and calculates the price
per gram of material used and the total value of the product. The cost per
processed gram is 3x for silver, 5x for platinum, and 8x for gold.

18. A company provides a special maternity/paternity bonus to its employees based
on the number of children: for employees with no children, there is no bonus;
for one child, the bonus is 5% of the salary; for two children, it is 8%; for three
children, it is 10%; for four children, it is 12%; and for more than four, it is 15%.

19. An appliance store has the following sales policy: for cash sales, a 10% discount
is applied, while for credit sales, a percentage is added to the product value
depending on the number of monthly installments, which is divided by the
number of installments. For 2 months, there is no financing interest; for 3
months, the value increases by 5%; for 4 months, it increases by 10%; for 5
months, it increases by 15%; and for 6 months, it increases by 20%. Determine
the product value, the amount payable by the customer, the value of the
discount or increase, and the value of each installment, if applicable.

20. An algorithm is needed to calculate the area of major geometric figures: triangle,
rectangle, circle, rhombus, and trapezoid. The areas are calculated using the
following formulas: area of a triangle = b*h/2, area of a rectangle = b*h, area of
a circle = Pi * radius2, area of a rhombus = D*d/2, area of a trapezoid = ½h(a+b)

21. An algorithm is required to bill phone calls. The cost per minute depends on
the type of call: local = $50, regional = $100, national long-distance = $500,
international long-distance = $700, and mobile = $200. Regional and national
long-distance calls have a 5% discount if their duration is 5 minutes or more.

22. A car rental company requires a program to calculate the cost of each rental.
The cost is determined based on the type of vehicle and the number of days
the user uses it. The daily rates per category are: car = $20000, camper = $30000,
minibus = $50000, and truck = $40000.

23. José Martí University grants a scholarship covering 100% of tuition fees to the
student with the highest average in each group and 50% to the second-highest
average. Knowing the names and averages of the four best students in a group,
determine who will receive the scholarship.

133

Programming Structures

24. A sports sponsorship company supports athletes who meet the following
conditions in their training times over the last month: the longest time does not
exceed 40 minutes, the shortest time is less than 30 minutes, and the average
time is less than 35 minutes. An algorithm is required to decide if an athlete
meets the conditions for sponsorship.

25. An engineering student needs three books: Calculus, Physics, and Programming,
with prices v1, v2, and v3 respectively. The student has a budget of x of financial
support for this purpose. An algorithm is required to help the student decide
whether they can buy all three books, two books, or one book. The student
wishes to prioritize the more expensive books since any remaining money must
be returned, and the less expensive books will be easier to acquire with their
own resources.

4.3 ITERATION STRUCTURES

These structures are also known as loops or repetition structures and are used to
program one or more actions to be executed repeatedly. They are very important in
programming since many activities need to be performed more than once.

Consider the case of an application for generating an invoice. A customer can buy
one product, but they can also buy two, three, or more. The same operations per-
formed to bill the first product must be executed for the second, third, and so on.
Iterative structures allow instructions to be written once and reused as many times
as necessary.

All repetition structures have at least two parts: definition and body. The definition
includes a condition that indicates how many times the loop body should repeat;
if the number of repetitions is not known in advance, the condition will specify the
circumstances under which the loop body repeats, such as using a switch variable.
The loop body consists of the instruction or set of instructions that include the re-
petition structure and will be executed multiple times.

4.3.1 Controlling Iterations
To establish the iteration condition and have control over it, it is almost always ne-
cessary to use a variable, whether it is a counter or a switch. This variable is referred
to as the loop control variable (Joyanes and Zahonero, 2002).

134

Algorithm Design

A loop control variable has three stages:

Initialization. For a variable to be used in the definition of an iterative structure, its
initial value must be known. Since these are always counters or switches, their value
will not be read during program execution, and the programmer must assign it befo-
re including the variable in a condition. If the variable is not initialized, it may happen
that the loop does not execute at all or runs infinitely.

Evaluation. The evaluation of the variable can occur either before or after each itera-
tion, depending on the structure used, to decide whether to execute the loop body
once more or exit and continue with the other instructions.

Update. If the variable is initialized to a value that allows the loop to execute, it is ne-
cessary to update it during each iteration so that at some point in the execution, the
loop can exit. If the loop is controlled by a variable and this variable is not updated,
an infinite loop will occur.

When specifying iterations controlled by a variable, it is important to ask the fo-
llowing questions: What is the initial value of the variable? What value should the va-
riable have for the loop body to repeat? How does the variable change? The answers
to these questions will require defining the three stages referred to and avoiding
logical errors.

4.3.2 WHILE Structure
This loop consists of a set of instructions that repeat as long as a condition is met.
As in decision structures, the condition is evaluated and returns a logical value
that can be true or false. In the case of the while loop, the instructions contained
in the repetition structure will only execute if evaluating the condition yields a true
value; that is, if the condition is met; otherwise, the instruction following End while
will execute.

Unlike other loops, the while structure begins by evaluating the conditional expres-
sion; if the result is true, the loop body instructions execute; upon reaching the End
while line, the condition is re-evaluated. If it holds true, the instructions execute
again, and this process continues until the condition is no longer met, at which point
control of the program passes to the line following End while. If the condition is not
satisfied during the first pass through the loop, the instructions within the loop will
not execute at all.

135

PROGRAMMING STRUCTURES

In pseudocode, the loop is written as follows:

While <condition> do
Repeating instructions . . .

End while

In a flowchart, the while loop can be represented by a decision and a connector,
as seen in Figure 51, or by a hexagon with two inputs and two outputs, as shown in
Figure 52. The first form is how it has traditionally been used; in this case, the loop is
not explicit in the diagram and is only identified when the algorithm is executed step
by step. In the second form, using a symbol that denotes iteration, the loop is evi-
dent. The DFD program commonly used for creating flowcharts utilizes the second
form, which is likely why the iteration symbol is becoming increasingly common.

In a Nassi-Shneiderman diagram, it is represented by a box for the loop definition
and internal boxes for the instructions that repeat, as shown in Figure 53.

Once the representation of this iterative structure is understood, it is necessary
to learn how to use it in algorithm design. Some examples are presented for this
purpose.

Figure 51. Representation of the While Loop in a Flowchart (version 1)

136

ALGORITHM DESIGN

Figure 52. Representation of the While Loop in a Flowchart (version 2)

Figure 53. Representation of the While Loop in a N-S Diagram

Example 26. Generating Numbers

This algorithm uses iterations to generate and display numbers from 1 to 10.

The first step is to declare an integer variable for loop control, which will also be
used to display the numbers. The variable is initialized to 1, then the loop is defi-
ned. Within this loop, the number is displayed, and the variable (counter) is incre-
mented. This way, the three fundamental operations for controlling a loop using
a counter variable are carried out: it is initialized, evaluated in the loop definition,
and updated progressively towards 10, which will end the loop. The pseudocode
is presented in Table 51, the flowchart in Figure 54, and the Nassi-Shneiderman
diagram in Figure 55.

137

PROGRAMMING STRUCTURES

Table 51. Pseudocode of the Algorithm for Generating Numbers

1 Begin

2 Integer: num = 1

3 While num <= 10 do

4 Write num

5 num = num + 1

6 End while

7 End algorithm

In the pseudocode, the loop is located between lines 3 and 6; line 3 defines the loop,
and line 6 ends it. Lines 4 and 5 correspond to the loop body; that is, the instructions
that repeat. Since the while loop requires the variable to be initialized, this operation
is performed in line 2. In this particular case, each time execution reaches line 6, it
will return to line 3 to evaluate the loop condition. If the condition is true, lines 4 and
5 will execute; if false, execution jumps to line 7.

Figure 54. Flowchart of the Algorithm for Generating Numbers

138

Algorithm Design

Figure 55. N-S Diagram of the Algorithm for Generating Numbers

Begin

Integer: num = 1

While num <= 0 do

Write num

Num = num + 1

End while

End algorithm

The flowchart shows more clearly the behavior of the iterative structure. When de-
claring the variable it is assigned an initial value (1). In the loop definition, the condi-
tion (num <= 10) is set; if this condition is met, execution continues down the flow,
the variable is shown and increased by one, and then it returns to the loop definition
to evaluate the condition, If true, the instructions are executed again; if false, it exits
to the left and goes to the end of the algorithm. The loop ends when num = 11.

In the Nassi-Shneiderman diagram, the loop is also easily identifiable since the en-
tire structure is contained within a single box, and the loop body appears internally.
Only when the loop has finished does execution move to the next box.

To verify the operation of this algorithm, a desk checking is performed, the results of
which are shown in Table 52.

Table 52. Verification of the Algorithm for Generating Numbers

Iteration Num Result
1

1 2 1

2 3 2

3 4 3

4 5 4

5 6 5

6 7 6

7 8 7

8 9 8

9 10 9

10 11 10

139

Programming Structures

Example 27. Divisors of a Number

An algorithm is required to display the divisors of a number in descending order.

Before starting to solve the exercise, it is necessary to clarify what is meant by a
divisor of a number.

Given two integers a and b, b is said to be a divisor of a if, when performing an inte-
ger division a/b, the remainder is 0. For example, if we take the numbers 27 and 3, we
can confirm that 3 is a divisor of 27 since when we divide 27/3 = 9, and the remain-
der is 0. For simplicity, the remainder of an integer division can be directly obtained
using the Mod operator (arithmetic operators are covered in Section 2.3.1)

Returning to the exercise, it requires displaying all divisors of a number starting from
the highest; therefore, the solution involves taking the numbers from the input num-
ber down to one and checking each value to see if it meets the condition of being a
divisor of the number. To do this, it is necessary to use a control variable that starts
at the number and decreases by one until it reaches 1.

For example, if we take the number 6, we must examine all the numbers between 6
and 1 and select those that are divisors of six, as shown below:

Number Counter Number Mod Counter Divisor
6 6 0 Yes

5 1 No

4 2 No

3 0 Yes

2 0 Yes

1 0 Yes

From the last column, we can see that the divisors of six, in descending order, are:
6, 3, 2, 1.

In a second example, if we take the number 8, we generate the list of numbers from
eight down to one and check each one to see if it is a divisor of eight.

Number Counter Number Mod Counter Divider
8 8 0 Yes

7 1 No

6 2 No

140

Algorithm Design

5 3 No

4 0 Yes

3 2 No

2 0 Yes

1 0 Yes

Thus, the divisors of 8, in descending order, are: 8, 4, 2, 1.

As shown in the previous examples, the key to finding the divisors is to generate
the list of numbers, and for that, it is appropriate to use an iterative structure and a
counter variable, as shown in the pseudocode in Table 53.

Table 53. Pseudocode for the Divisor Algorithm

1 Begin

2 Integer: num, cou

3 Read num

4 cou = num

5 While cou >= 1 Do

6 If num Mod cou = 0 then

7 Write cou

8 End if

9 cou = cou – 1

10 End while

11 End algorithm

The importance of using a loop to generate a list of numbers has already been men-
tioned, but not all numbers are shown since only those that meet the condition of
being divisors of the input number are required. The control variable of the loop is
initialized to the input number, the loop runs while this variable is greater than 1 (line
5), and the variable is decremented by one (line 9). Table 54 shows the results of the
verification with the numbers 6 and 8.

Table 54. Verification of the Divisor Algorithm

Execution num cou Output
1 6 6 6

5
4

141

PROGRAMMING STRUCTURES

3 3

2 2

1 1

0
2 8 8 8

7
6
5
4 4

3
2 2

1 1

0

Flowchart and N-S diagram representations are presented in Figures 56 and 57.

Figure 56. Flowchart of the Divisor Algorithm

142

ALGORITHM DESIGN

Figure 57. N-S Diagram of the Divisor Algorithm

 4.3.3 DO WHILE Structure

This structure is proposed as an alternative to the Repeat Until loop, as the latter is
no longer present in modern programming languages. The Do While loop allows a
set of instructions to be executed repeatedly, with the particularity that it evaluates
the condition controlling the loop aft er each iteration. This means that the first eva-
luation of the condition occurs aft er executing the loop’s instructions, ensuring that
the body of the loop is executed at least once.

When the word Do is found in a program, the following lines continue to execute.
When the While statement is found, the associated condition is evaluated, which
must return a logical value (true or false). If the value is true, control returns to the
Do instruction, and the subsequent instructions are executed again. If the condition
is false, execution continues at the instruction following While. In pseudocode, it is
written as follows:

Do
 Instruction 1
 Instruction 2
 . . .
 Instruction n

While <condition>

143

PROGRAMMING STRUCTURES

In flowcharts, there is no specific symbol to represent this type of structure; the-
refore, it is implemented using a decision symbol and a connector to return to a
previous process and repeat the sequence while the condition is true, as shown in
Figure 58.

Figure 58. Do While Loop in Flowchart

In N-S diagrams, a box is used to represent the loop, and internal boxes are used for
the actions that make up the body of the loop, as presented in Figure 59.

Figure 59. Do While Loop in N-S Diagram

144

Algorithm Design

Example 28. Sum of Positive Integers

This algorithm reads integer numbers and sums them as long as they are positive.
When a negative number or zero is entered, the loop ends, the total sum is displa-
yed, and the algorithm terminates. The pseudocode is shown in Table 55.

Table 55. Pseudocode for the Sum of Integers Algorithm

1 Begin

2 Integer: num = 0, sum = 0

3 Do

4 sum = sum + num

5 Read num

6 While num > 0

7 Write Sum

8 End algorithm

In this algorithm, two variables are declared and initialized since the first instruction
to be executed is the sum, and it is necessary to control the content of the varia-
bles. In line 5, a number is read, but to perform the sum, it is necessary to go back,
which is subject to the condition of being a positive integer. If the condition is met,
execution returns to line 3, performs the sum in line 4, and reads a number again,
continuing this way until zero or a negative number is entered. Only after the loop
ends is the result of the sum displayed, and execution stops. Figure 60 presents the
flowchart, and Figure 61 shows the N-S diagram.

145

PROGRAMMING STRUCTURES

Figure 60. Flowchart of the Sum of Integers Algorithm

Figure 61. N-S Diagram of the Sum of Integers Algorithm

146

Algorithm Design

Table 56 shows the results of verifying the algorithm.

Table 56. Verification of the Sum of Integers Algorithm

Iteration Num Sum num > 0 Output
0 0

1 4 4 T

2 8 12 T

3 1 13 T

4 5 18 T

5 0 F

18

Example 29. Binary Number

Given a number in base 10, this algorithm calculates its equivalent in base 2; that is,
it converts a decimal to binary.

One way to convert a base 10 (decimal) value to base 2 (binary) is to divide the
value by 2 and take the remainder, which can be 0 or 1, then take the quotient
and divide it by 2 again. This operation is performed repeatedly until the result is
0. However, this solution has a slight difficulty to resolve: the remainders form the
binary number but must be read in reverse order; that is, the first number obtai-
ned occupies the least significant position while the last should occupy the first
position in the binary number.

Consider the number 20

20 / 2 = 10 Remainder = 0
10 / 2 = 5 Remainder = 0
5 / 2 = 2 Remainder = 1
2 / 2 = 1 Remainder = 0
1 / 2 = 0 Remainder = 1

If the numbers are taken in the order they are generated, we obtain: 00101, which
equals 5 in decimal, far from the original value of 20.

The numbers generated are taken in reverse order; the last remainder is the first
digit of the binary number. Therefore, the binary number generated from this con-
version is: 10100. This does equal 20.

147

Programming Structures

Now, the question is: how to ensure that each new digit obtained is placed to the left
of the previous ones?

To solve this issue, a variable is used to keep track of the position that the digit
should occupy in the new number. The variable starts at 1 and is multiplied by 10 in
each iteration to indicate an increasingly significant position. Thus, we have:

Input: number in base 10 (decimal)
Output: number in base 2
Process:

digit = decimal Mod 2
binary = binary + digit * position
decimal = decimal / 2
position = position * 10

The solution to this problem is presented in Table 57.

Table 57. Pseudocode for the Binary Number Algorithm

1 Begin

2 Integer: dec, bin = 0, pos = 1, dig

3 Read dec

4 Do

5 dig = dec Mod 2

6 bin = bin + dig * pos

7 dec = dec / 2

8 pos = pos*10

9 While dec > 0

10 Write “Binary:”, bin

11 End algorithm

The algorithm shows that the operations in lines 5 to 8 repeat while there is a num-
ber to divide (dec > 0). In line 5, a digit (0 or 1) is obtained corresponding to the
remainder of dividing the decimal number by two. That digit is multiplied by the
power of 10 to convert it into 10, 100, 1000, or any other power when it is a one, and
then added to the digits obtained previously (line 6). The decimal number is halved
each time, tending toward zero (line 7), while the power indicating the position of
the next one is multiplied by 10 in each iteration (line 8).

148

ALGORITHM DESIGN

The flowcharts and N-S diagrams for this algorithm are presented in Figures 62 and
63, respectively.

Figure 62. Flowchart of the Binary Number Algorithm

To test this algorithm, the binary equivalents for the numbers 20 and 66 is calcula-
ted, yielding results of 10100 and 1000010, respectively, which are correct. The data
generated from the tests are presented in Table 58.

149

PROGRAMMING STRUCTURES

Figure 63. N-S Diagram of the Binary Number Algorithm

Table 58. Verification of the Binary Number Algorithm

Iteration dig dec Bin pos Output
0 1

20 0
1 0 10 0 10
2 0 5 0 100
3 1 2 100 1000
4 0 1 100 10,000
5 1 0 10100 100000 Binary: 10100

66 0 1
1 0 33 0 10
2 1 16 10 100
3 0 8 10 1000
4 0 4 10 10,000
5 0 2 10 100000
6 0 1 10 1000000
7 1 0 1000010 Binary: 1000010

150

Algorithm Design

4.3.4 FOR Structure

This structure, like the previous ones, allows for repeated execution of a single ins-
truction or a group of instructions. However, unlike other repetition instructions, it
manages the initial value, the increment or decrement value, and the final value of
the control variable as part of the loop definition.

When a for instruction is encountered during the execution of an algorithm, the con-
trol variable (counter) takes the initial value, it is verified that this value does not ex-
ceed the final value, and then the loop’s instructions are executed. Finding the end
for statement, the increment occurs and it is verified again that the control variable
has not surpassed the allowed limit, and the instructions within the loop are execu-
ted repeatedly until the final established value is exceeded.

The for loop terminates when the control variable (counter) surpasses the final va-
lue; that is, equality is allowed, and instructions execute when the counter equals
the final value.

Some programming languages define the syntax for this loop by including a con-
dition that must be met, similar to the While loop, instead of a final value for the
variable, as proposed in pseudocode.

This loop can be presented in three ways: the first is the most common, where an
increment of 1 occurs in each iteration, in which case it is not necessary to explicitly
write this value. In pseudocode, it is expressed as follows:

For variable = initial_value to final_value do
Instructions

End for

In flowchart representation, it appears as shown in Figure 64, and in the N-S dia-
gram as shown in Figure 65.

151

PROGRAMMING STRUCTURES

Figure 64. For Loop in Flowchart (Version 1)

In the flowchart, it is not necessary to write all the words; these are replaced by
commas (,) except the first one.

Figure 65. For Loop in N-S Diagram (Version 1)

The second case of using the for loop arises when the increment is diff erent from 1,
in which case the word increment followed by the value to be added in each itera-
tion will be written.

In pseudocode, it is written as:

For vble = initial_value to final_value increment value do
 Instructions that repeat
End for

F Flowchart and N-S diagram representations appear as in Figures 66 and 67.

152

ALGORITHM DESIGN

Figure 66. For Loop in Flowchart (Version 2)

Figure 67. For Loop in N-S Diagram (Version 2)

The third case occurs when the for loop does not increment from an initial value to a
higher value, but rather decreases from a higher initial value to a lower value. To do
this, it is enough to write decrement instead of increment.

In pseudocode, it looks like this:

For counter = initial_value to final_value decrement value do
 Instructions
End for

In this case, for the first iteration to execute, the initial value must be greater than
the final value; otherwise, it will simply skip to the instruction following the end for.

It is important to note that when the control variable must decrease in each itera-
tion, decrement and the value must always be written, even if it is -1.

In flowchart representation, it will be enough to precede the value to be decremen-
ted with a minus sign (-).

153

Programming Structures

Example 30. Iterative Sum

Given a positive integer n, the sum of the numbers from 1 to n is calculated and
shown.

In this case, an iterative structure is required to generate the numbers from one to n,
and each value in this interval is stored in an accumulator-type variable.

For example: If the number 3 is entered, the sum will be:

1 + 2 + 3 = 6

If the number 6 is entered, the sum will be:

1 + 2 + 3 + 4 + 5 + 6 = 21

The exercise can be organized as follows:

Input: number
Output: sum
Process:

sum =

The solution to this exercise is presented in Table 59 in pseudocode notation, with
flowchart and N-S diagrams shown in Figures 68 and 69.

Table 59. Pseudocode for the Sum Algorithm

1 Begin

2 Integer: num, i, sum = 0

3 Read num

4 For i = 1 to num do

5 sum = sum + i

6 End for

7 Write “Sum:”, sum

8 End algorithm

i = n
∑ I

i = 1

154

ALGORITHM DESIGN

Figure 68. Flowchart of the Sum Algorithm

155

PROGRAMMING STRUCTURES

Figure 69. N-S Diagram of the Sum Algorithm

Since the for loop automatically increments the variable, the only instruction within
the loop is to sum the generated numbers.

Table 60 shows the behavior of the variables when executing the algorithm to calcu-
late the sum of the numbers from 1 to 6.

Table 60. Verification of the Sum Algorithm

Iteration Num i sum Output
0

6 0
1 1 1

2 2 3

3 3 6

4 4 10

5 5 15

6 6 21 Sum: 21

156

Algorithm Design

Example 31. Multiplication Table

Commonly known as the multiplication table of a number, this is a list of the first 10
multiples. For example, the table for 2:

2 * 1 = 2
2 * 2 = 4
2 * 3 = 6
2 * 4 = 8
2 * 5 = 10
2 * 6 = 12
2 * 7 = 14
2 * 8 = 16
2 * 9 = 18
2 * 10 = 20

To display it this way, the iterative for structure can be used, which varies the multi-
plier from 1 to 10, calculating the product and displaying the data in each iteration.
The pseudocode is shown in Table 61, with flowchart and N-S diagrams in Figures
70 and 71.

Table 61. Pseudocode for the Multiplication Table Algorithm

1 Begin

2 Integer: m, n, r

3 Read m

4 For n = 1 to 10 do

5 r = m * n

6 Write m, ‘*’, n, ‘=’, r

7 End for

8 End algorithm

157

PROGRAMMING STRUCTURES

Figure 70. Flowchart of the Multiplication Table Algorithm

Figure 71. N-S Diagram of the Multiplication Table Algorithm

158

Algorithm Design

To verify the algorithm’s functionality, the multiplication table for 4 is generated,
with the results presented in Table 62.

Table 62. Verification of the Multiplication Table Algorithm

Iteration m n r Output
4

1 1 4 4 * 1 = 4

2 2 8 4 * 2 = 8

3 3 12 4 * 3 = 12

4 4 16 4 * 4 = 16

5 5 20 4 * 5 = 20

6 6 26 4 * 6 = 24

7 7 28 4 * 7 = 28

8 8 32 4 * 8 = 32

9 9 36 4 * 9 = 36

10 10 40 4 * 10 = 40

4.3.5 Nested Iterative Structures

Iterative structures, like selective ones, can be nested; that is, one can be placed
inside another.

The nesting of loops consists of an outer loop and one or more inner loops, where
each time the outer loop repeats, the inner loops reset and execute all their defined
iterations (Joyanes, 2000).

A clear example to illustrate the concept of nested loops is a digital clock. Time is
measured in hours, minutes, and seconds; hours consist of minutes, and minutes
consist of seconds. Therefore, if you write a loop for the hours, another for the minu-
tes, and another for the seconds, the minute loop in each iteration must wait for the
60 iterations of the second loop (0..59) to complete, and the hour loop must wait for
the minute loop (0..59) to finish.

159

Programming Structures

Example 32. Digital Clock

To implement a digital clock, it is necessary to declare three variables to control:
hours, minutes, and seconds. Each of these variables controls a loop, as follows: the
seconds increment from 0 to 59, the minutes also from 0 to 59, and the hours from
1 to 12 or from 1 to 24.

The variable that controls the hours increments by one each time the variable that
controls the minutes has completed its cycle from 0 to 59. Similarly, the variable of
the minutes increments by one each time the variable of the seconds has comple-
ted its cycle from 0 to 59. For this to happen, the hour loop must contain the minute
loop, and the minute loop must contain the second loop, as shown in Table 63.

Table 63. Pseudocode for the Digital Clock Algorithm

1 Begin

2 Integer: h, m, s

3 For h = 1 to 12 do

4 For m = 0 to 59 do

5 For s = 0 to 59 do

6 Write h,”:”, m, “:”, s

7 End for

8 End for

9 End for

10 End algorithm

This same algorithm expressed in a flowchart is presented in Figure 72 and in a N-S
diagram in Figure 73.

160

ALGORITHM DESIGN

Figure 72. Flowchart of the Digital Clock Algorithm

When executing this algorithm, the output would look like this:

1:0:0
1:0:1
1:0:2
…
1:0:58
1:0:59
1:1:0
1:1:1
1:1:2

161

PROGRAMMING STRUCTURES

…
1:59:58 AM
1:59:59 AM
2:0:0
2:0:1
2:0:2

…

This algorithm is designed to end execution when it reaches 12:59:59. To make the
clock run indefinitely, it would be necessary to place the three loops inside another
loop, so that when it reaches 12:59:59, the variable h resets and the count starts
again. The outer loop should be an infinite loop of the form: while true do.

Figure 73. N-S Diagram for the Digital Clock Algorithm

Example 33. Nine Multiplication Tables

In a previous example, a loop was used to generate the multiplication table of a sin-
gle number; in this case, nested loops are used to generate the tables from two to
10. The first loop is associated with the multiplicand and refers to each of the tables
to be generated, so it takes values between 2 and 10. The inner loop is related to the

162

Algorithm Design

multiplier, responsible for generating the multiples in each of the tables, thus taking
values between 1 and 10. The pseudocode is presented in Table 64.

Table 64. Pseudocode for Nine Multiplication Tables

1 Begin

2 Integer: m, n, r

3 For m = 2 to 10 do

4 Write “Multiplication table for”, m

5 For n = 1 to 10 do

6 r = m * n

7 Write m, “*”, n, “=”, r

8 End for

9 End for

10 End algorithm

When executing this algorithm, the output would look like this:

Multiplication table for 2
2 * 1 = 2
2 * 2 = 4
2 * 3 = 6
…
Multiplication table for 3
3 * 1 = 3
3 * 2 = 6
3 * 3 = 9
…
And so on until

 10 * 10 = 100

The flowcharts and N-S diagrams for this algorithm are presented in Figures 74 and
75.

163

PROGRAMMING STRUCTURES

Figure 74. Flowchart for Nine Multiplication Tables

Figure 75. N-S Diagram for Nine Multiplication Tables

164

Algorithm Design

4.3.6 More Examples of Iteration

Example 34. Minimum, Maximum, and Average of n Numbers

This exercise consists of reading n numbers and then reporting the minimum and
maximum numbers from the list, as well as calculating the average value.

Suppose the user inputs the following list of data:
2
14
55
6
12
34
17

We have:
Number of inputs: 7
Maximum number: 55
Minimum number: 2
Sum: 140
Average = 140 / 7 = 20

To solve this problem, the first step is to determine how to know when to stop rea-
ding data, as the number of inputs is not specified, and there are no conditions given
in the problem statement to indicate when to end the loop. This type of problem is
common when the amount of data to process is not known in advance.

There are at least three simple ways to implement loops when the number of itera-
tions is unknown: The first approach is to define a variable to store this data (n) and
ask the user to input it, for example, by asking “how many numbers would you like
to enter?” The inputted data is then used as a final value to control the loop; the se-
cond approach is to use a switch or flag, which involves defining a variable with two
possible values: yes and no or 0 and 1. For example, asking the user “Another num-
ber (Y/N) ?”, if the user inputs “Y,” data reading continues; otherwise, the loop ends.
The third approach is to use a sentinel value that ends the loop when a condition is
met. For example, the loop ends when the number 0 is entered, presenting the user
with a message like: “Enter a number (0 to end): ”.

165

Programming Structures

To solve this exercise, the first proposal is chosen. The following information is avai-
lable:

Input data: number of inputs, numbers
Output data: average, maximum, and minimum

Processes:
sum = sum + number
Average = sum / number of inputs

To identify the minimum and maximum numbers, we can choose between two al-
ternatives: the first is to initialize the minimum variable with a very large number
and the maximum variable with 0 so that they get updated in the first iteration; the
second is to not initialize the variables and assign the first input value to both the
maximum and minimum variables. In this case, we opted for the second approach.
The algorithm is presented in Table 65.

In this algorithm, the variables: numin, num, max, min, and avg are working varia-
bles; count is the counter that controls the loop, and sum is the accumulator that
totals the numbers entered to later calculate the average.

It is important to understand which instructions should be inside the loop and which
should be outside, either before or after. There is no golden rule that applies to all
cases, but it can be helpful to remember that everything inside the loop repeats;
that is, you should ask yourself how many times the instruction needs to be execu-
ted. If the answer is only once, there is no reason for it to be inside the loop. In this
example, reading the number of inputs should only execute once since this quantity
will establish the limit of repetitions, and calculating the average should also only
be done once; therefore, these actions are placed outside the loop, while adding
the entered number must occur as many times as numbers are entered, hence this
instruction appears within the loop.

166

Algorithm Design

Table 65. Pseudocode for Minimum, Maximum, and Average

1 Begin

2 Integer: numin, num, sum=0, min, max, count=0

3 Real: avg

4 Read numin

5 While count < can do

6 Read num

7 sum = sum + num

8 If count = 0 then

9 min = num

10 max = num

11 Else

12 If num < min then

13 max = num

14 End if

15 If num > max then

16 max = num

17 End if

18 End if

19 count = count + 1

20 End while

21 avg = sum / numin

22 Write “Minimum number:”, min

23 Write “Average:”, avg

24 Write “Maximum number:”, max

25 End algorithm

The loop will execute as long as count is less than the value of the variable numin.
Since count starts at 0, the loop runs for any value of numin that is greater than or
equal to 1. However, if the value entered for numin is 0, the loop would not run,
leading to a division by zero error when calculating the average. The last instruction
in the loop is count = count + 1, which is essential since the counter must increment
with each iteration to reach the value of the numin variable. It is important to re-
member that every loop must have a limited number of iterations; therefore, when
designing the algorithm, you must anticipate how the loop will end.

167

Programming Structures

Table 66 presents the behavior of the variables and the results of an implementation.

Table 66. Verification of the Algorithm for Minimum, Maximum, and Average

Iteration Numin num min Max Count sum avg Output
0 0

7
1 2 2 1 2

2 14 2 14 2 16

3 55 2 55 3 71

4 6 2 55 4 77

5 12 2 55 5 89

6 34 2 55 6 123

7 17 2 55 7 140

20
Minimum number: 2
Average = 20
Maximum number: 55

Example 35. Grading Process

In a group of n students, three partial evaluations were conducted. The goal is to
calculate each student’s final grade and determine the number of students who
passed, the number who failed, and the average grade for the group, considering
that the percentage weight for each evaluation was agreed upon between the tea-
cher and the group, and the minimum passing grade is 3.0.

Using the strategy proposed to understand the problem, let’s assume a specific
case, such as this one:

Second semester group: 20 students
Course: Programming
Percentage for first evaluation: 30%
Percentage for second evaluation: 30%
Percentage for third evaluation: 40%

Now, let’s find the solution for one student:

Student Pedro Pérez receives the following grades:
Evaluation 1: 3.5

168

Algorithm Design

Evaluation 2: 4.0
Evaluation 3: 2.8
What’s Pedro’s final grade?

Applying the previously mentioned percentages we have:

Final grade = 3.5 * 30% + 4.0 * 30% + 2.8 * 40%
Final grade = 1.05 + 1.2 + 1.12
Final grade = 3.4

The next step is to decide whether the student passes or fails the course:

Final grade >= 3.0? (3.4 >= 3.0?) Yes

Pedro Pérez passed the course; consequently, he is counted as one of those who
passed. To calculate the course average, his grade needs to be added to an accumu-
lator variable, which will ultimately be divided by the total number of students (20).

This same procedure must be carried out for each student in the group.

Next, we identify and classify the problem data:

Input data: student name, grade1, grade2, grade3, percentage1, percentage2, per-
centage3.

Output data: final grade, average, number of students passing, number of students
failing

Process:
final grade = grade1 * percentage1 + grade2 * percentage2 + grade3 * percen-
tage3
sum = sum + final grade
Average = sum / number of students

In the analysis of the previous exercise, it was mentioned that there are three ways
to program a loop when the number of iterations is not known in advance, and the
first approach was implemented. In this example, the second approach will be used,
which consists of asking the user if they want to continue entering data. The loop
ends when the user responds negatively.

169

PROGRAMMING STRUCTURES

This algorithm uses three counters and an accumulator, in addition to working varia-
bles. The variables used to record the number of students, the number of students
passing, and the number failing the course are counters, while the variable used to
total the final grades is an accumulator. The loop is not controlled by a predefined
number of students, but rather by the contents of the ans variable, which must take
‘Y’ or ‘N’ as values.

The design of the solution is presented in Figure 76 in flowchart notation, and the
results from a test run with four students are shown in Table 67.

Figure 76. Flowchart for Grading Process

170

Algorithm Design

Table 67. Verification of the Grading Process Algorithm

per1 per2 Per3 name Grade 1 Grade 2 Grade 3 Fg Pass Fail stud sum ans avg

0 0 0 0 S

30 30 40

A 3.0 3.5 4.0 3.5 1 1 3.5 S

B 2.0 2.5 2.0 2.5 1 2 6 S

C 4.0 3.2 2.0 3.0 2 3 9 S

D 2.2 3.5 2.5 2.7 2 4 11.7 n 2.9

The output on the screen is as follows:

Name: A
Final grade: 3.5
Passed

Name: B
Final grade: 2.5
Failed

Name: C
Final grade: 3.0
Passed

Name: D
Final grade: 2.7
Failed

Average: 2.9
Passed: 2
Failed: 2

Example 36. Fibonacci series

This well-known series, proposed by the Italian mathematician of the same name,
corresponds to a mathematical model explaining the reproduction of rabbits and
was first published in 1202 in a work entitled Liber Abaci.

Fibonacci posed the problem as follows: suppose a pair of rabbits produces two
offspring each month, and each new rabbit begins reproducing after two months.

171

Programming Structures

Thus, when acquiring a pair of rabbits, in the first and second months there will be
one pair, but by the third month they will have reproduced, resulting in two pairs. In
the fourth month, only the first pair reproduces, increasing the count to three pairs;
in the fifth month, the second pair begins reproducing, leading to five pairs, and so
on. If no rabbits die, the number of rabbits each month is given by the sequence: 0,
1, 1, 2, 3, 5, 8, 13, 21, 34, …

Assuming the first two numbers are constants—specifically, that the first two num-
bers of the sequence are 0 and 1—the subsequent numbers can be obtained by
summing the two previous ones as follows:

Term Value Obtained from
1 0 Constant
2 1 Constant
3 1 0 + 1
4 2 1 + 1
5 3 2 + 1
6 5 3 + 2
7 8 5 + 3
8 13 8 + 5
9 21 13 + 8
10 34 21 + 13

This topic is further discussed in Section 8.7, where a recursive solution is proposed.

In this example, the goal is to design an algorithm that generates the first n terms of
this series.

To solve this exercise using an iterative structure, it is necessary, first, to determine
how many numbers to generate—i.e., to know the value of n; second, since each
number is obtained by summing the two previous terms, three variables are used:
one for the generated value and two more to keep track of the last two data points.
Additionally, a variable is defined to control the loop. The solution is presented
through an N-S diagram in Figure 77.

172

ALGORITHM DESIGN

Figure 77. N-S Diagram for Fibonacci Series

To observe the behavior of the variables, Table 68 presents the results of the algori-
thm verification, showing how the values change from one variable to another.

Table 68. Verification of the Fibonacci Series Algorithm

Iteration n Con A B f Output
10 0 0 1 0

1 1 1 0 1 0

2 2 0 1 1 1

3 3 1 1 2 1

4 4 1 2 3 2

5 5 2 3 5 3

6 6 3 5 8 5

7 7 5 8 13 8

8 8 8 13 21 13

9 9 13 21 34 21

10 10 21 34 55 34

Example 37. Greatest Common Divisor

Given two integers, we need to find their greatest common divisor (GCD).

173

Programming Structures

The GCD of two numbers is the largest number that divides them both; it can even be
one of the numbers since every number is a divisor of itself. The GCD can be obtai-
ned iteratively or recursively. In this section, we solve it using the iterative approach,
while Section 8.7 presents the recursive solution using the Euclidean algorithm.
When addressing this problem, the first idea that might come to the reader’s mind is
to break down the numbers into their divisors and take the common ones, as taught
in school. That is a valid solution; however, it is difficult to implement algorithmically.

Using the Euclidean algorithm, the GCD is obtained as follows: divide the first num-
ber by the second; if the division is exact (remainder = 0), the GCD is the second num-
ber. If the division is not exact, divide the divisor by the remainder. If the modulus is
zero, the GCD is the number that was placed as the divisor; otherwise, repeat this
operation until an exact division is achieved.

For example, let’s find the GCD of the numbers 12 and 8

Since the division is not exact, we perform a second division, taking the previous
divisor as the dividend and the remainder as the divisor.

This second operation is an exact division (remainder = 0), so the divisor is the solu-
tion to the problem; that is, the GCD of 12 and 8 is 4.

Based on the previous example, we can organize the data of the exercise as follows:

Input data: a, b (two integers)
Output Data: GCD
Process: c = a Mod b

The solution is presented in pseudocode in Table 69

174

Algorithm Design

Table 69. Pseudocode for the Greatest Common Divisor Algorithm

1 Begin

2 Integer: num1, num2, a, b, c

3 Read num1, num2

4 a = num1

5 b = num2

6 Do

7 c = a Mod b

8 a = b

9 b = c

10 While c != 0

11 Write “GCD:”, a

12 End algorithm

The verification of this algorithm with the numbers 12 and 8, and 6 and 20 generates
the data presented in Table 70.

Table 70. Verification of the Greatest Common Divisor Algorithm

Execution Iteration a b c Output
1 12 8
1 1 12 8 4
1 2 8 4 0
1 4 0 GCD: 4
2 6 20
2 1 6 20 6
2 2 20 6 2
2 3 6 2 0

2 0 GCD: 2

Example 38. Reverse Digits

Given an integer, we want to reverse the order of its digits. For example, taking the
number 123, when reversed, it becomes 321.

175

Programming Structures

To change the order of the digits, it is necessary to separate them starting from the
last digit. This is done by dividing by 10 and taking the remainder using the modulo
operator.

This operation is equivalent to the expression: 123 Mod 10 = 3

In this way, we obtain the last digit of the original number, which is 3, and it will be
the first in the reversed number. Next, we obtain the following digit, which is 2, by
dividing the quotient by 10, and so on.

As we extract the digits from the original number, we arrange them from left to right
to form the new number. To do this, it is necessary to multiply the current number
being formed by 10 and add the last digit obtained, as follows:

 3 * 10 + 2 = 32

Then we obtain the third and last digit, which is 1, and perform the operation:

32 * 10 + 1 = 321

The operations are repeated until the quotient of the division is 0, at which point
all digits will have been reversed. In this order of ideas, we have the following data:

Input data: number
Output data: reversed number

176

ALGORITHM DESIGN

Processes:
Digit = number Mod 10
Number = number / 10
Reversed number = reversed number * 10 + digit

The flowchart is presented in Figure 78.

Figure 78. Flowchart to Reverse the Digits of a Number

177

Programming Structures

In this algorithm, the iterative structure do while is used. Since there is no specific
symbol for this structure in flowchart notation, it is modeled using a decision and
a connector that controls the execution back to the first process that is repeated.

The data obtained from the step-by-step verification of the algorithm is shown in
Table 71.

Table 71. Verification of the Reverse Digits Algorithm

Iteration num dig Rev Output
123

1 123 3 3

2 12 2 32

3 1 1 321

0 321

Example 39. Perfect Number

A number is considered perfect if the sum of its divisors, excluding itself, equals the
number. We need an algorithm to determine if a number n is perfect.

To better understand the concept of a perfect number, let’s consider two cases: 6
and 8. The divisors of 6 are: 1, 2, 3, and 6; while the divisors of 8 are: 1, 2, 4, and 8
(every number is a divisor of itself). If we sum only the divisors less than each num-
ber, we have:

Let Dn denote the divisor of n. Thus, we have: the sum of the divisors of 6, less than
6, is equal to 6, from which it is concluded that 6 is a perfect number; regarding the
second number, the sum of the divisors of 8, less than 8, is equal to 7, consequently,
8 is not a perfect number.

Now, to determine if a number is perfect, we require three basic processes: identi-
fying the divisors, summing them, and checking if the sum equals the number. To
identify the divisors less than n, we need to iterate from 1 to n/2 and verify for each
number whether it is a divisor of n; this is done using an iterative structure. To sum

178

ALGORITHM DESIGN

them, an accumulator variable is updated within the loop; and finally, a decision
structure located outside the loop will determine whether the number is perfect or
not. The solution to this exercise is presented in Figure 79.

Figure 79. N-S Diagram for Perfect Number

Table 72 shows the results of the verification of this algorithm with numbers 6 and 8.

Table 72. Verification of the Perfect Number Algorithm

Execution n i sum Output
1 6 0

1 1 1

1 2 3

1 3 6 6 is a perfect number

2 8 0

2 1 1

2 2 3

2 3 3

4 7 8 is not a perfect number

179

Programming Structures

Example 40. Iterative Exponentiation

Given two integers: b (the base) and e (the exponent), we need to calculate the result
of the exponentiation.
Exponentiation is a mathematical operation whose result is the product of multi-
plying the base by itself as many times as indicated by the exponent. Among its
properties are: if the exponent is 0, the result is 1, and if the exponent is 1, the result
is the same as the base. For this exercise, to simplify the solution, we limit the expo-
nent to positive integers. For example:

23 = 2 * 2 * 2 = 8
35 = 3 * 3 * 3 * 3 * 3 = 243

To perform exponentiation, we need to implement an iterative structure and ca-
rry out successive multiplications of the base within it. The exponent indicates the
number of iterations to perform. The data is as follows:

Input data: base, exponent
Output data: result
Process: product = product * base

Table 73 presents the pseudocode for this exercise.

Table 73. Pseudocode for Iterative Exponentiation

1 Begin

2 Integer: b, e, p = 1, with

3 Read b, e

4 For with = 1 to e do

5 p = p * b

6 End for

7 Write p

8 End algorithm

Any number multiplied by 0 results in 0; therefore, the variable p (product), which
accumulates the results of multiplication, is initialized to 1. If it were initialized to 0,
the final result would also be 0. The results of verifying this algorithm are presented
in Table 74.

180

Algorithm Design

Table 74. Verification of the Iterative Exponentiation Algorithm

Execution Iteration b e With P Output
1 1

1 1 2 4 1 2

1 2 2 4

1 3 3 8

1 4 4 16 16

2 3 5 1

2 1 1 3

2 2 2 9

2 3 3 27

2 4 4 81

5 5 243 243

Example 41. Prime Number

A prime number is an integer that has only two divisors: one and itself. We need an
algorithm that, given a number n, decides whether it is prime or not.

To determine if a number satisfies this property, we check if it has any divisors other
than one and itself; if it does, it is not prime. Otherwise, it is considered prime.
However, it is not necessary to check all numbers; to determine if a number is pri-
me, it suffices to search for divisors between 2 and the square root of the number7.

Examples include numbers 9 and 19. The square root of 9 is 3, so we look for divisors
between 2 and 3, finding that 3 is divisor, thus 9 is not a prime number. For 19, we have
that the integer square root is 4, so we look for divisors between 2 and 4, finding that
the numbers 2, 3, and 4 are not divisors of 19, concluding that 19 is a prime number.
We could verify this for the numbers up to 18, but the result would be the same.

To determine whether a number is prime, we have the following data and operations:

Input data: number

7 The purpose of this exercise is to apply an iterative structure in the solution; therefore, we proceed

to look for divisors between all numbers between 2 and the integer square root of the number.

There is another faster method to check if a number is prime, proposed by Eratosthenes (Greek

mathematician of the 3rd century B.C.), who proposes that to check if a number is prime, one only

needs to divide by 2, 3, 5, and 7 (Great Encyclopedia Espasa, 2005).

181

PROGRAMMING STRUCTURES

Output data: message “prime number” or “not a prime number”
Process: number Mod i where i: 2 ... root(number)

The algorithmic solution is presented in Figure 80 in flowchart notation.

Figure 80. Flowchart for Prime Number

182

Algorithm Design

Four variables have been declared in this algorithm: n, r, i, and sw; n for the number,
r to compute the square root of n, i to Iterate between 2 and r and sw. The last varia-
ble is a switch or flag, which serves to indicate if any divisors of n were found during
the iterations for i. This variable is initialized to 0; if it remains 0 at the end of the
cycle, it means no divisors were found and thus the number is prime. If the variable
takes the value 1, it indicates that there is at least one divisor, and hence the number
is not prime.

Table 75 shows the results of the step-by-step implementation for numbers 9 and 19.

Table 75. Verification of the Prime Number Algorithm

Execution Iteration n r i sw Output
1 9 3 0

1 2
2 3 1 9 is not prime

2 19 4 0
1 2
2 3
3 4 19 is prime

Example 42. Points on a Line

Given the linear equation y = 2x – 1, we need an algorithm to calculate n points
through which the line passes from x = 1.

If we take n = 4, the points would be:

X = 1 →y = 2(1) – 1 = 1 →(1.1)
X = 2 →y = 2(2) – 1 = 3 →(2.3)
X = 3 →y = 2(3) – 1 = 5 →(3.5)
X = 4 →y = 2(4) – 1 = 7 →(4.7)

In this case, the input data corresponds to n, the output data corresponds to the
points (x,y), as many as indicated by n, and the process is limited to developing the
equation by replacing x with the corresponding value. An iterative structure is used,
as shown in the N-S diagram in Figure 81.

183

PROGRAMMING STRUCTURES

Figure 81. N-S Diagram for Points on a Line

The data generated to verify the correctness of this algorithm is presented in Table 76.

Table 76. Verification of the Point s on a Line Algorithm

Execution N x y Output
1 4 1 1 (1.1)

1 2 3 (2.3)

1 3 5 (3.5)

4 7 (4.7)

Example 43. Square Root

Calculate the integer square root of a number.

It is known that the square root of a number is another number that, when squared,
equals the first number.

√4 = 2 → 4 = 22

√25 = 5 → 25 = 52

184

Algorithm Design

Some numbers, like the previous ones, have an exact integer square root, while
others result in a real number, like the square root of 10, and for negative numbers,
the root is a complex or imaginary number.

The integer square root of a number, in cases where there is no exact root, is obtai-
ned by truncating the decimal part; for example, the integer square root of 10 is 3.

In this exercise, the input data is the number, the output data is the root, and the
process is to calculate the squares of numbers from 1 up to the square root of the
number. The integer root is found when the next number, when squared, gives a
value greater than the input number. The solution to this exercise is presented in
pseudocode in Table 77.

Table 77. Pseudocode for the Square Root Algorithm

1 Begin

2 Integer: n, i = 0, c

3 Read n

4 Do

5 i = i + 1

6 c = (i+1) * (i+1)

7 While (c <= n)

8 Write “The square root of”, n, “is”, i

9 End algorithm

Table 78 presents the results of the step-by-step execution of this algorithm.

Table 78. Verification of the Square Root Algorithm

Execution N I C Output
1 25 0

1 1 4

1 2 9

1 3 16

1 4 25

1 5 36 The square root of 25 is 5

√10 = 3.16227766

185

Programming Structures

2 10 0

2 1 4

2 2 6

2 3 16 The square root of 10 is 3

4.4 Proposed Exercises

Design algorithms to solve the problems proposed below. It is suggested to alter-
nate between pseudocode notation, flowcharts, and N-S diagrams, as wells as the
three iterative structures studied in this chapter.

1. A student has seven partial grades in the Introduction to Programming course,
an algorithm is required to calculate the average of such grades.

2. Design an algorithm to read integers until 0 is entered. Calculate the square of
negative numbers and the cube of positive numbers.

3. Design an algorithm to input numbers as many as the user wants. At the end of
the cycle, report how many even and odd numbers were recorded, as well as
the sum of the even and odd numbers.

4. The principal of Buena Nota School wants to know the average age of the
students in each grade. The school offers education from preschool to fifth
grade and has a group of students in each grade. Design an algorithm that
reads the age and grade of each student in the school and generates the
corresponding report.

5. A coach has proposed to an athlete to complete a five-kilometer route for 10
days, to determine if he/she is eligible for the five-kilometer test. To qualify,
the athlete must meet the following conditions:

• That in none of the tests takes more than 20 minutes.
• That in at least one of the tests he/she takes less than 15 minutes.
• That his/her average time is less than or equal to 18 minutes.

Design an algorithm to record the data and decide if the athlete is eligible for the
competition.

6. An insurance company employs n salespeople. Each salesperson receives a
base salary and an additional 10% in commission on their sales. An algorithm

186

Algorithm Design

is required to calculate the amount to be paid to each employee, as well as the
total amounts to be paid in terms of salaries and commissions.

7. Develop an algorithm to process the final Biology grades for a group of n
students. The aim is to determine the group’s average grade, classify the
students into the following categories based on their grades: excellent, good,
average, and deficient, and count how many students fall into each category.
The grading scale is as follows:

Grade >= 4.8: Excellent
4.0 <= grade <= 4.7: Good
3.0 <= grade <= 3.9: Average
Grade <= 2.9: Deficient

8. Design an algorithm that generates the n-th number of the Fibonacci sequence.

9. A survey was conducted to n participants, requesting their opinions on the topic
of compulsory military service for women. The response options were: in favor,
against, and no response. An algorithm is required to calculate the percentage
of respondents who selected for each option.

10. An algorithm is required that, through a menu, performs the functions of a
calculator: addition, subtraction, multiplication, division, exponentiation, and
percentage calculation. The menu will include a shutdown option to terminate
the execution of the algorithm.

11. An algorithm is required to generate an invoice for a sale with n items. A 5%
discount will be applied to quantities exceeding ten units of the same item.

12. Design an algorithm that reads an integer and sums the digits that compose it.

13. The Systems Engineering program requires an algorithm to determine the
percentages of students who work and those who are exclusively dedicated to
their studies, broken down by gender.

14. Buena Ropa store has monthly sales records and requires an algorithm to
determine: in which month the highest sales occurred, in which month the
lowest sales occurred, and the average monthly sales.

15. Design an algorithm to calculate the factorial of an n number.

16. An algorithm is required to find the prime numbers between 1 and n

187

Programming Structures

17. Given a group of 20 students who took the Algorithms course, it is necessary to
determine the group’s average grade, the highest and lowest grades, how many
students passed the course, and how many failed.

18. Given the equation y = 2x2+3x – 4 calculate the points through which the parabola
passes in the interval -5, 5.

19. Design an algorithm to find the first n perfect numbers.

20. Design an algorithm to validate a grade. The grade must be a real value between
0 and 5.0. If a value outside this range is entered, it should be re-entered until a
valid grade is provided.

21. Design an algorithm to validate a date in the format dd/mm/yyyy. A date is
considered valid if it falls between 01/01/1900 and 31/12/2100, with the month
between 1 and 12 and the day between 1 and 31, considering that some months
have 28 (or 29), 30, or 31 days. If the date is not valid, an error message should be
displayed, and the data should be re-entered again. The algorithm terminates
when a valid date is entered.

189

5. ARRAYS

One must know oneself.
If this does not serve

to discover truth,
 it at least serves

as a rule of life,
 and there is nothing better.

Pascal.

When considering an algorithm as the design of a solution to a problem using a
computer program, it is necessary to consider at least four aspects:

• Data Processing: The operations for transforming input information into ou-
tput information.

• Data Storage: How data is stored and accessed, considering primary and se-
condary memory storage. Arrays are a way to manage data in main memory.

• System Architecture: This pertains to how the various components of the sys-
tem are organized and interact with each other. Part of this topic will be ad-
dressed in the following chapter.

• User Interface: How the user interacts with the system, what elements are avai-
lable, and how their requirements are met. This topic is not addressed directly
in this book.

 Arrays are structures that allow for the grouping of data to facilitate its management
in computer memory and to perform operations that require access to sets of data
simultaneously, such as searching and sorting. To better understand this concept,
consider the following cases:

First case: An algorithm is required to calculate the final grade of a student based
on three partial grades. In this situation, as in all the examples presented in the pre-
vious chapters, it is sufficient to declare three variables, one for each grade.

Second case: An algorithm is required to calculate the final grade of a group of 40
students based on three partial grades and to present the list in alphabetical order.
Arguably, 160 variables are declared for the grades and 40 for the names; however,
this is practically unmanageable. For cases like this, it is necessary to group data of

190

Algorithm Design

the same type under a common identifier, so that an array of names and an array of
grades can be managed.

5.1 CONCEPT OF AN ARRAY

An array is a collection of elements of the same type8 stored in consecutive memory
addresses, which are referenced by a common identifier or name. The elements are
distinguished from one another by an index that represents the position of each
element within the structure.

In this regard, Brassard and Bratley (1997: 167) consider the term array as a synonym
of array, which they conceptualize as a data structure with a fixed number of ele-
ments of the same type stored in contiguous positions in the computer’s memory.
Thus, knowing the size of the elements and the address of the first one allows for
easy calculation of the position of any item when necessary, considering that they
are organized from left to right.

An array is also defined as a composite data type composed of a collection of sim-
ple or composite data. This implies that an element of an array can be: a number, a
character, a string, an array, or a record.

The use of arrays is essential when it is required to store and operate many data
items. For example: a group of students, a payroll, an invoice (which includes se-
veral products), an inventory, or a library; all these concepts refer to sets of data
of the same type, on which operations such as searching, sorting, and summing
can be performed.

Among the characteristics of arrays are:

• They are static structures; that is, once defined they cannot be resized.
• They store homogeneous data, except in untyped languages.
• Data is stored in memory occupying consecutive positions, so that only the

reference to the first element is necessary.
• They share a common identifier (variable name) that represents all the ele-

ments.

8 The definition of array as a collection of data of the same type (homogeneous) is widely adopted

in programming languages with type definitions, where it is necessary to declare variables and arrays

before using them. However, in untyped languages, arrays can group elements of different types.

191

Arrays

• Individual elements are identified by the index or position they occupy within
the array.

5.2 TYPES OF ARRAYS

Arrays are classified according to their contents; consequently, there are numerical
arrays, character arrays, string arrays, record arrays, and arrays of arrays.

When an array is composed of simple data, such as numbers or characters, it is re-
ferred to as a linear array or one-dimensional (1D) array, and they are known as vec-
tors; these have only one index. When the elements of the array are also arrays, it is
referred to as a multidimensional array, which has an index for each dimension and
is called an array. Figures 82, 83, and 84 illustrate the graphical representations of
one-dimensional, two-dimensional, and three-dimensional arrays.

Figure 82. Graphical Representation of a Vector

Array data

Position or index 1 2 3 4 5 6 7

Figure 83. Graphical Representation of a Two-Dimensional Array

Column index: j

Row Index: i

1 2 3 4 5 6
1 1.1

2 2.3

3

4 4.6

192

ALGORITHM DESIGN

Figure 84. Graphical Representation of a Three-Dimensional Array

As can be seen in the graphs, a vector is a list whose elements are identified by a
single index, while a two-dimensional array requires two indexes: one for rows and
another for columns. A three-dimensional array requires three indexes, as its struc-
ture is analogous to a three-dimensional object, similar to a box with length, width,
and height divided into equally three-dimensional compartments. Theoretically, an
array of two, three, four, or more dimensions can be defined; however, in practice, it
is common to use vectors and two-dimensional matrices, but not three-dimensio-
nal or higher. The remainder of this chapter focuses on the handling of vectors and
two-dimensional matrices.

 5.3 HANDLING VECTORS

A vector is a static data structure corresponding to a collection of data of the same
type that are grouped under the same name and distinguished from one another by
the position they occupy within the structure.

According to Timarán et al. (2009), a vector is a finite and ordered collection of
elements. It is finite because every vector has a limited number of elements, and
it is ordered because it is possible to determine which is the first, second, and
n-th element.

193

Arrays

For example, if seven students’ ages are collected, they can be stored in a vector
structure called v_age consisting of seven elements. Graphically, this vector would
appear as shown in Figure 85.

Figure 85. Graphical Representation of an Age Vector

Vector data 15 16 18 19 20 21 16
= v_age

Position or index 1 2 3 4 5 6 7

5.3.1 Declaration

Declaring a vector should be understood as the process of reserving space in me-
mory to store a specified number of data elements, which will be distinguished by
an identifier and an index, as previously described.

The simplest and most functional way to declare a vector is as follows:

Data_type: identifier[size]

Examples:

Integer: v_age[7]

A vector of seven integer elements type is being declared, as shown in Figure 85.
This means is reserved in memory to store seven integer data elements in consecu-
tive positions, which will be recognized by the identifier v_age.

String: v_name[30]

This declaration reserves memory to store 30 names, which will be recognized by
the identifier: v_name.

5.3.2 Accessing Elements

To access an element of a vector and perform operations such as assignment, rea-
ding, printing, and forming expression, it is necessary to write the identifier (name)
of the array and, in brackets, the position being referenced, in the following way:

vector[pos]

194

Algorithm Design

Example of declaration and access to the elements of a vector:

Integer: v_age[7]
v_age[1] = 15
v_age[3] = 18
v_age[6] = 21

A seven-position vector is declared, and data is assigned to positions 1, 3, and 6. The
graphical representation is shown in Figure 86.

Figure 86. Vector with Data

Array data 15 18 21

Position or index 1 2 3 4 5 6 7

To read a number and store it in the fourth position, it should be written:

Read v_age[4]

To print the data stored in the sixth position, it should be written:

Print v_age[6]

Similarly, expressions can be constructed using the elements of the vector. For
example, if you want to know the difference between the ages stored at positions 1
and 3, you should write:

Integer: dif
dif = v_age[1] – v_age[3]

In summary, when the vector identifier is written along with the position of an element,
it behaves as if it were a variable on which different operations can be performed.

5.3.3 Traversing a Vector

Many operations applied to vectors involve all elements. In these cases, it is neces-
sary to access consecutively from the first to the last position, a process known as
traversing a vector.

195

Arrays

To traverse a vector, an iterative structure is used, controlled by a variable that starts
at 1 to reference the first position and increments by one until reaching the size of
the array, as follows:

Data_Type: vector[n]9

int: i
for i = 1 to n do

 operation on vector[i]
end for

The variable i represents the position of each element; thus, any operation defined
on vector[i] inside the loop will be executed on each of the vector’s elements.

Example 44. Storing Numbers in a Vector

Design an algorithm that reads 10 numbers and stores them in a vector.

To solve this exercise, it is necessary to use the operations that have been explained
in the previous pages: declaration, traversal, and access to the elements of a vector.
The N-S diagram of this algorithm is presented in Figure 87.

Figure 87. N-S Diagram for Storing Numbers in a Vector

Begin

Integer: number[10], i

For i = 1 to 10 do

Read number[i]

End for

End algorithm

In this algorithm, the use of an iterative structure is observed to traverse the vector
and read a value for each position, using the loop control variable (i) as the index to
identify the elements of the array.

Example 45: Input and Output of Data from a Vector

Design an algorithm to read 10 numbers, store them in a vector, and then display
them in reverse order from how they were entered.

9 n is the vector size.

196

Algorithm Design

One of the advantages of using arrays is that they allow to store sets of data in me-
mory and easily access them. The data in memory can be listed in any order, depen-
ding on the direction in which the vector is traversed.

Traversal is done using the loop control variable as the index of the vector. If the
variable starts at 1 and is incremented, it will traverse forward; whereas if it starts at
10 and is decremented, it will traverse backward.

In this algorithm, a vector is declared, and two loops are used: the first traverses
from position 1 to 10 to input data for each position, while the second traverses from
the last position to the first, printing the data from each position. The N-S diagram of
this algorithm is presented in Figure 88.

Figure 88. N-S Diagram for Input and Output Data from a Vector

Begin

Integer: v[10], i

For i = 1 to 10 do

Read v[i]

End for

For i = 10 to 1 decrement 1 do

Write v[i]

End for

End algorithm

If the following data are entered when verifying the algorithm: 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, the vector would look like in Figure 89:

Figure 89. Graphical Representation of a Vector

2 4 6 8 10 12 14 16 18 20

1 2 3 4 5 6 7 8 9 10

When traversing the vector and displaying the data starting from the tenth position,
the data would be in the following order: 20, 18, 16, 14, 12, 10, 8, 6, 4, 2.

197

Arrays

Example 46: Calculate the Average of Numbers in a Vector

Read 10 integers and store them in a vector. Calculate and display the average, then
generate a list with numbers smaller than average and another list with the numbers
greater than the average.

Reading numbers and calculating the average can be done using only loops, but
when it is required to display the numbers less and greater than the average separa-
tely, it is clear that the numbers must have been stored to access and compare them
with the average. Here, the need for a vector becomes evident; otherwise, it would
be necessary to declare 10 variables and implement 20 decisions to compare the
numbers. This would be bad programming practice, especially considering that just
as there are 10 numbers, there could be 100.

To better understand the exercise, consider the vector shown in Figure 90.

Figure 90. Graphical Representation of the Numeric Vector

2 44 16 8 10 32 24 160 13 20

1 2 3 4 5 6 7 8 9 10

Once the data is stored in the vector, it is necessary to calculate the average, which
requires determining the total sum. In this case, the sum is:

Sum = 329
Average = 32.9

To create a list of numbers greater than the average, each element in the vector
must be compared to the value obtained as the average:

Numbers greater than the average: 44, 160

In the same way, the second list is obtained:

Numbers less than the average: 2, 16, 8, 10, 32, 24, 13, 20

Now, we proceed to the design of the algorithm based on this information:

Input data: number (10 numbers are read inside a loop and stored in a vector)

198

Algorithm Design

Storage structure: 10-element vector

Output data: average, numbers less than the average, and numbers greater than the
average

Process: sum = sum + number (for each position in the vector)
average = sum / 10

In this algorithm, three loops are implemented, one to read the data and store it in
each position of the vector, and two more to generate the two lists independently.

The algorithm is presented in Table 79 in pseudocode notation.

Table 79. Verification of the Square Root Algorithm

1 Begin

2 Integer: v[10], i, sum = 0

3 Real: average

4 For i = 1 to 10 do

5 Read v[i]

6 sum = sum + v[i]
7 End for
8 average = sum / 10

9 Write “Average:”, average

10 Write “Greater than the average”

11 For i = 1 to 10 do

12 If v[i] > average then

13 Type v[i]

14 End if

15 End for

16 Write “Less than the average”

17 For i = 1 to 10 do

18 If v[i] < average then

19 Type v[i]

20 End if

21 End for

22 End algorithm

199

Arrays

5.4 HANDLING MATRICES

An array is a set of elements arranged along m rows and n columns, also known as a
two-dimensional array or a complete table (Gran Enciclopedia Espasa, 2005: 7594).

In programming, an array is defined as a static data structure that, under a single
identifier, stores a collection of data of the same type. It is a two-dimensional array
organized in the form of rows and columns, and therefore, uses two indexes to iden-
tify the elements. Graphically, an array has the form of a two-dimensional table, as
shown in Figure 91.

Figure 91. Graphical Representation of an Array

Column index: j

Row Index: i

1 2 3 4 5 6

1 1.1 1.2 1.3 1.4 1.5 1.6

2 2.1 2.2 2.3 2.4 2.5 2.6

3 3.1 3.2 3.3 3.4 3.5 3.6

4 4.1 4.2 4.3 4.4 4.5 4.6

5.4.1 Declaration

To declare an array, the syntax is the same as for vectors, with the difference that
two sizes are used to indicate the number of rows and columns. The general form
to declare an array is:

DataType: identifier[m][n]

Where m is the number of rows and n is the number of columns. The total number
of available positions in the array is the product of the number of rows times the
number of columns: m * n.
Examples:

Integer: mat[4][6]
Character: letters[10][12]

The first statement declares the four-row, six-column mat array, as shown in Figure
89, capable of holding 24 integers. In the second, the 10-row, 12-column letter array,
which reserves space to store 120 characters.

200

Algorithm Design

5.4.2 Access to Elements

To refer to an element in an array, you must specify the array identifier or name, and
in brackets, indicate the row index and column index, as follows:

Identifier [i][j]

Where i refers to the row and j to the column. Writing the identifier and the two in-
dexes refers to a specific element; therefore, it can be used as a simple variable to
which data is assigned and from which it is taken to form expressions or send data
to an output device.

Example:

Integer: m[3][4]
m[1][1] = 2
m[2][2] = 5
m[3][4] = 15

The first statement declares the array m, the second assigns the number 2 to the
first position of m, and the third assigns the number 5 to the element located at the
intersection of row 2 and column 2. Similarly, the fourth store number 15 in position
3.4. Graphically, the result of these expressions would be like Figure 92.

Figure 92. Graphical Representation of an Array with Data

1 2 3 4

1 2

2 5

3 15

5.4.3 Traversing of an Array

Some operations to each element of the array are applied, such as reading and sto-
ring data, printing all data, searching for an element, or summing a numeric array.
In these cases, the act of consecutively visiting all the elements of the structure is
referred to as traversal. Two nested loops are required to traverse an array: one to
traverse the rows and another to traverse the columns.

201

ARRAYS

In general terms, to traverse an array of size m * n, the loops are defined as follows:

For i = 1 to m do
For j = 1 to n do

Operation on the data
End for

End for

Example 47. Filling in an Array

To put into practice what has been studied regarding the declaration, access, and
traversal of an array, this example declares an array of 5 * 10, traverses it position by
position, reads, and stores a number in each of them. The flowchart of this algori-
thm is presented in Figure 93.

Figure 93. Flowchart for Filling an Array

In this example, an array of 5 rows and 10 columns is declared for a total of 50 posi-
tions. A loop with the variable i is used to traverse all the rows, and while in each of

202

Algorithm Design

them, a loop with the variable j is used to traverse each of the columns; that is, each
of the positions in the i-th row and in each position, a value read from the keyboard
is stored.

Example 48. Printing the Content of an Array

Declare a 4*6 array, fill each position with the sum of its indexes, and then display its
content. For this, it is necessary to implement two independent traversals, one for
each operation, the first to fill the array and the second to show its content. Once
the first traversal is completed, the array will be like the one shown in Figure 94. The
N-S diagram of this algorithm is presented in Figure 95.

Figure 94. 4*6 Array

m[i][j] 1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

This algorithm implements two array traversals using four nested loops in pairs. In
the first traversal, the variables i + j are summed, and the result is stored in the co-
rresponding position of the array. In the second traversal, at each row change, “\n” is
printed; this is a common code in programming that means a line break, i.e., to move
to the next line. At each column change, the “\t” code is printed, which is also com-
mon in programming and means to insert a tabulation, used in this case to separate
the numbers from each other, and then the content of the cell is printed. Thus, when
executing this algorithm, an output such as the following is obtained:

2 3 4 5 6 7

3 4 5 6 7 8

4 5 6 7 8 9

5 6 7 8 9 10

203

Arrays

Figure 95. N-S Diagram to Printing the Contents of an Array

Begin

Integer: m[4][6], i, j

For i = 1 to 4 do

For j = 1 to 6 do

m[i][j] = i + j

End for

End for

For i = 1 to 4 do

Write “\n”

For j = 1 to 6 do

Write “\t”, m[i][j]

End for

End for

End algorithm

5.5 MORE EXAMPLES WITH ARRAYS

Example 49. Finding the Largest and Smallest Values in a Vector

Design an algorithm to store 12 numbers in a vector and then identify the smallest
number, the largest number, and the position of each within the vector.

The first part of this exercise, concerning the declaration of the vector and storing
the numbers, is performed similarly to previous exercises: by using an iterative
structure. The second part: identifying the largest and smallest numbers, requires a
solution strategy.

The strategy consists of declaring two variables: one to store the position of the
largest number found and another for the position of the smallest number. These
two variables are initialized at 1 to begin comparisons from the first element in
the vector.

204

Algorithm Design

The following data is considered for the design of the solution:

Input data: number (read 12 times)

Output data: largest value, position of the largest, smallest value, and position of the
smallest

Storage structure: a 12-position vector

Process: comparison and assignment

The pseudocode for this algorithm is presented in Table 80.

When verifying the algorithm and entering the data: 3, 54, 1, 32, 9, 58, 31, 90, 23, 67,
72, and 112, the vector shown in Figure 96 is obtained.

Table 80. Pseudocode to Find the Largest and Smallest Values in a Vector

1 Begin

2 Integer: v[12], i, pmay = 1, pmen = 1

3 For i = 1 to 12 do

4 Read v[i]

5 End for

6 For i = 1 to 12 do

7 If v[i] > v[pmay] then

8 pmay = i

9 Else

10 If v[i] < v[pmen] then

11 PMEN = I

12 End if

13 End if

14 End for

15 Write “Largest number:”, v[pmay], “at position:”,pmay

16 Write “Smallest number:”, v[pmen], “in position:”,pmen

17 End algorithm

205

ARRAYS

Figure 96. Vector with Values from Example 49

The output obtained by running the algorithm with the mentioned data is:

Largest number: 112 at position: 12
Smallest number: 1 at position: 3

Example 50. Recurrence of a Data Point in an Array

There is a list of 25 students and their municipality of origin. An algorithm is required
to store the list in an array and query students coming from a specific municipality.

This algorithm is structured in two basic operations: the first consists of storing the
data in a array of 25 rows and two columns, for which it performs a traversal reading
the data for each position; and locating the students from the requested municipa-
lity. This involves reading the data to be searched and then performing a traversal
in which the reference data is compared with the data stored in the second column
of the array, if they match, a counter is incremented, and the content of the first co-
lumn is displayed. Systematizing the information from the exercise, we have:

Input data: student names, municipality of origin, and queried municipality
Storage structure: 25-row and 2-column array
Output data: student names and counter
Process: compare and count

The solution for this exercise is presented in Figure 97.

Example 51. Diff erence of Vectors

Design an algorithm that stores data in two vectors and subsequently identifies and
displays the elements present in the first vector but not in the second.

206

ALGORITHM DESIGN

In this case, the first step is to declare two vectors and fill them with data. Then, a
traversal is performed on the first vector, and for each of its elements, and another
traversal is conducted on the second vector to find matches for that element. This
method verifies whether the data exists in both arrays, in which case a flag is raised.
At the beginning of each inner loop, the flag is initialized, and if, at the end of the
traversal over the second vector, the flag remains unset, the element from the first
vector is displayed. Figure 98 graphically illustrates the comparisons made for the
first element.

Figure 97. N-S Diagram for Recurrence of Data in an Array

207

ARRAYS

Figure 98. Diff erence of Vectors

In this example, the first vector contains the first 10 multiples of 3, and the second
vector contains the first 10 multiples of 6. The lines illustrate the comparisons made
from the first element of vector 1 and all the elements of vector 2. The same process
will be repeated for the second element and then for the third until the traversal of
the first vector is complete. The circles indicate the elements identified during the
traversals as common to both vectors. Consequently, the elements of the first array
that are not circled correspond to the diff erence: 3, 9, 15, 21, and 27. That is, multi-
ples of 3 that are not multiples of 6. The flowchart for the solution to this exercise is
presented in Figure 99.

208

ALGORITHM DESIGN

Figure 99. Flowchart for the Vector Diff erence Algorithm

Example 52. Interleaving Vectors

209

ARRAYS

Given two vectors a and b of n elements, an algorithm is required to generate a third
vector (c) with the data from the first two interleaved. The new vector has the size
of 2n positions.

As an example, consider two vectors (a and b) with five elements each, and interlea-
ve their elements to create vector c with 10 elements, as shown in Figure 100.

Figure 100. Interleaving Vectors

In the solution of this exercise, three arrays are declared. The first two are filled with
data recorded by the user, and the third is the result of interleaving the first two. The
reading and storage of data for the two vectors are performed within the same loop,
and the interleaving is done using a second loop. The algorithm is shown in Table 81.

Table 81. Pseudocode for Interleaving Vectors

1 Begin

2 Integer a[5], b[5], c[10], i=1, x=1

3 While i <= 5 do

4 Read a[i], b[i]

5 i = i + 1

6 End while

7 While i <= 5 do

8 c[x] = a[i]

9 x = x + 1

10 c[x] = b[i]

210

Algorithm Design

11 x = x + 1

11 i = i + 1

12 End while

13 End algorithm

Example 53. Summation of Rows and Columns of an Array

Given an m*n array, design an algorithm to sum each of the rows and store the re-
sults in a vector called sumrow, sum each of the columns and store the results in the
vector sumcol, and finally display the two vectors.

Consider an array of four rows by six columns; this implies that the sumrow vec-
tor should have four positions and the sumcol vector should have six positions, as
shown in Figure 101.

In this example, it is assumed that the array is filled with consecutive numbers from
1 to 24. In the algorithm presented in Figure 102, the data is input by the user.

Figure 101. Summation of Rows and Columns of an Array

1 2 3 4 5 6

1 1 2 3 4 5 6 21

2 7 8 9 10 11 12 57

3 13 14 15 16 17 18 93

4 19 20 21 22 23 24 129

40 44 48 52 56 60%

211

ARRAYS

Figure 102. N-S Diagram for Summation of Rows and Columns of an Array

212

ALGORITHM DESIGN

Figure 102. (Continuation)

To sum the rows, two nested loops are required. The outer loop controls the row
index, and the inner loop controls the column index. The accumulator is initialized
before starting the execution of the inner loop, and its value is stored at the end of
this loop. To sum up the columns, a similar approach is taken but considering that
the outer loop corresponds to the column index and the inner loop to the row index.

When executing the algorithm and entering the numbers from 1 to 24, the results
would be:

Row summation: 21 57 93 129
Column summation: 40 44 48 52 56 60

Example 54. Principal Diagonal of an Array

Design an algorithm to display and sum up the principal diagonal of a square array.

Before designing the algorithm, Figure 103 graphically identifies the principal diago-
nal in a 5 * 5 array.

Figure 103. Main Diagonal of an Array

1 2 3 4 5

1 1 2 3 4 5

2 6 7 8 9 10

3 11 12 13 14 15

4 16 17 18 19 20

5 21 22 23 24 25

Observing the graph, it can be seen that the elements of the principal diagonal have
the same indexes in both rows and columns: m[1][1], m[2][2], m[3][3], m[4][4] and

213

ARRAYS

m[5][5]. From this, it is concluded that a single loop is suff icient to traverse the diago-
nal; the loop control variable can be used as both the row and column index.

In the flowchart of Figure 104, two nested loops are implemented to read numbers
and store them in the array. Then, a loop is implemented to traverse the diagonal.
In each iteration, the element is displayed, and it is added to the cumulative sum.

Figure 104. Flowchart for the Vector Diff erence Algorithm

214

Algorithm Design

Example 55. Processing Grades Using Arrays

An algorithm is required to process the grades of a group of 40 students. Each stu-
dent has three partial grades, and it is desired to know the final grade, which is ob-
tained by average. After processing the grades for all students, the average for the
group should also be calculated.

To solve this exercise, a vector and an array will be utilized. The vector will store
the names of the students, while the array will store the partial grades and the final
grades. Consequently, the vector will have 40 positions, and the array will consist of
40 rows and four columns. Figure 105 displays the model of the data structure for
six students.

Figure 105. Arrays for Processing Grades

Vector for names Array for grades

1 2 3 4

1 Carlos Salazar 1 3.5 2.5 4.0 3.3

2 Carmen Bolaños 2 4.2 3.8 4.5 4.2

3 Margarita Bermúdez 3 2.0 4.5 4.8 3.8

4 Sebastián Paz 4 2.5 3.5 4.4 3.5

5 Juan Carlos Díaz 5 3.4 3.5 3.8 3.6

6 Verónica Marroquín 6 4.0 4.6 3.3 4.0

Partial
grade 1

Partial
grade 2

Partial
grade 3

Final
grade

Although two data structures are used: a vector and an array, the data can maintain
its integrity through the vector’s index and the row index. In the array, the columns
correspond to the grades, with the first three columns for the partial grades and
the last column for the final grade. In this context, the data is read as follows: Carlos
Salazar has grades of 3.5, 2.5, and 4.0 for his partial grades, and his final grade is 3.3.
The same applies to the other rows.

Since each row in the vector and array refers to the same student, iterations occur
student by student; therefore, only one loop is used. Within this loop, the name and
partial grades are read, and the final grade is calculated, displayed, and accumu-
lated to subsequently compute the course average. The algorithm is presented in
pseudocode notation in Table 82.

215

Arrays

Table 82. Pseudocode for Processing Grades Using Arrays

1 Begin

2
String: names[40]
Real: grades[40][4], sum = 0, average
Integer: count

3 For count = 1 to 40 do

4 Write “Name: \t”

5 Read names[count]

6 Write “Partial grade 1: \t “

7 Read grades[with][1]

8 Write “Partial grade 2: \t “

9 Read grades[with][2]

10 Write “Partial grade 3: \t “

11 Read grades[count][3]

12 grades[count][4] = (grades[count][1] + grades[count][2] + grades[count]
[3])/3

13 Write “Final grade: \t”, grades[count][4]

14 sum = sum + grades[count][4]

15 End for

16 average = sum / 40

17 Write “Course average: \t“, average

18 End algorithm

Verifying the algorithm and processing the notes that were used in the model of
Figure 105 has as output:

Name: Carlos Salazar
Partial grade 1: 3.5
Partial grade 2: 2.5
Partial grade 3: 4.0
Final grade: 3.3

Name: Carmen Bolaños
Partial grade 1: 4.2
Partial grade 2: 3.8
Partial grade 3: 4.5
Final grade: 4.2

… …
Group average: 3.7

216

Algorithm Design

5.6 PROPOSED EXERCISES

Solve the following exercises

1. Given two numeric vectors, design an algorithm that identifies and displays the
numbers they have in common.

2. Design an algorithm to add two numeric vectors

3. Design an algorithm to transpose a square array

4. Given two matrices: A[m][n] and B[n][m], design an algorithm to check if the
array B is the transpose of A.

5. Design an algorithm to calculate the product of a number by a 10-element
numeric vector.

6. Design an algorithm to multiply two vectors

7. Design an algorithm to insert a value into a vector at a position chosen by the
user. If the position is occupied, the data shifts to the right to make space to
the new value. If the vector is full, the value is not inserted, and a message is
displayed.

8. There is a vector of characters in which a phrase has been stored. Design an
algorithm that determines if the phrase is a palindrome10.

9. Design an algorithm to make the data in a vector circular: all elements move
one position, and the last element moves to the first position.

10. Design an algorithm to determine if two matrices are equal; that is, verify that
for all elements it holds that A[i][j] = B[i][j]

11. Design an algorithm to determine if two matrices contain the same elements,
even if they are not in the same order.

12. Design an algorithm to add two matrices

13. Design an algorithm to determine if an array is symmetric

14. Design an algorithm to calculate the product of a number by an array

10. Palindromo: word or phrase that reads the same from left to right, as from right to left. (Circle

Encyclopedia Universal, 2006:1670)

217

Arrays

15. Design an algorithm to calculate the product of two matrices

16. Given the array Letters[20][20], which is completely filled with alphabetic
characters, calculate the absolute frequency and the relative frequency for
each of the vowels.

17. To bill the energy service, the company Energía Para Todos has a list of users
stored in a vector and a list of readings for the previous month in a second
vector. An algorithm is required to read the kW value, take the current reading
of each user and record it in a third vector, calculate the consumption for the
month by difference of readings, and display for each user: name, consumption,
and amount to be paid.

219

6. SUBPROGRAMS

A digital computer
is like a calculation.

It can break a problem
into parts as small

as desired.
Van Doren

[Translation of the original epigraph in Spanish]

Numerous examples have been proposed and explained throughout this document;
however, these were designed to illustrate a particular topic and do not reflect the
complexity of real problems where the solution may involve thousands, hundreds of
thousands, or millions of lines of source code.

Programs designed to solve real data processing problems, which cater to large sets
of requirements and respond to multiple constraints, those that Booch (1994: 4) re-
fers to as industrial-scale software, cannot be undertaken as a single piece. Building,
debugging, and maintaining them would be too difficult and costly.

The most widespread strategy for reducing complexity is known as divide and con-
quer. This approach consists of breaking down the problem to be solved into a cer-
tain number of smaller subproblems, solving each subproblem successively and
independently, and then combining the solutions obtained to, in this way, solve the
original problem (Brassard and Bratley, 1997: 247), (Aho, Hopcroft, and Ullman, 1988:
307). Thus, a program is composed of several subprograms.

A subprogram or subroutine implements an algorithm designed for a particular
task. Therefore, it cannot constitute a solution to a problem by itself; but it is called
by another program or subprogram.

In Oviedo (2002), several advantages of using subprograms can be identified, such
as: the fragmentation of the program into modules, which provides greater clarity
and ease of distributing work among members of the development team, ease of
writing, testing and debugging the code, a more understandable logical structure of
the program, and the possibility of repeatedly executing the subprogram.

220

Algorithm Design

Considering the nature of the task that the subprogram performs and whether it
returns data to the calling program, subprograms are categorized as functions or
procedures (Oviedo, 2002).

6.1 FUNCTIONS

The concept of function in the field of programming was taken from mathematics
and consists of establishing a relationship between two sets: origin and mirror, whe-
re each element of the first corresponds to one of the second (Gran Enciclopedia
Espasa, 2005: 5140). In terms of Joyanes (1996: 166), a function is an operation that
takes one or more values and generates a new value as a result. Values that enter
the function are called arguments. In the same vein, Timarán et al (2009: 57) defi-
nes a function as: a subprogram that receives one or more parameters, executes a
specific task, and returns a single value as a result, to the program or function that
invoked it.

A function is represented as:

y = f(x)
f(x) = 3x - 2

Y is read as and depends on x, or y is a function of x, and it means that to obtain
the value of y, it is necessary to replace x with a value (argument) and perform the
operation indicated by the function. For example, if the function is solved with x =
2, then y = 4.

An important characteristic of functions is that their result depends exclusively on
the value or values they receive as arguments. If the Greatest Common Divisor func-
tion is taken, it requires two arguments, and the result it generates will be different
for each pair of arguments.

Let f(x,z) be the Greatest Common Divisor of x and z. Then:

f(12,18) = 6
f(40,60) = 20

Functions are classified into two types: internal and external.

221

Subprograms

Internal Functions. These are defined within the programming language, distributed
in the form of libraries11 or APIs12, and are used as a basis for program development.
They address general needs and are usually grouped depending on the domain in
which they can be used. For example: mathematics, strings, dates, and files.

External Functions. Also known as user-defined functions, these are written by the
programmer to meet specific needs in their applications.

6.1.1 Designing a Function
A function has two parts: the definition and implementation. Some authors, such as
Joyanes (1996: 167) and Galve et al., (1993: 30), refer to them as the header and the
body, respectively. In a program, for example in C language, the function definition
provides the compiler with information about the function’s characteristics, whose
implementation will appear later. This helps verify the program’s correctness.

Function Definition. This includes three elements that are explicit in pseudocode
notations and Nassi-Shneiderman diagrams, but not in the flowcharts. These are:

a. The return type
b. The function’s identifier or name
c. The list of parameters

Until a few years ago, it was common to define a function in the following form:

Function identifier(parameters): return_type

Example:

Factor function(integer n): integer

This instruction defines the function called factorial which receives an integer as a
parameter and stores it in the variable n and returns an integer as a result.

11 It is a collection of standardized and tested programs and subprograms that can solve specific

problems (Lopezcano, 1998: 322).

12 API is an acronym for Application Programming Interface, which in Spanish means: Interfaz para

programación de aplicaciones o conjunto de herramientas para desarrollar un programa.

222

Algorithm Design

Currently, to maintain the similarity with current programming languages, functions
are defined as:

Return_type identifier(parameters)

Examples:

Integer factorial(integer n)
Real power(integer base, integer exponent)
Boolean isPrime(integer n)

The reserved word function has been deleted, and the return type is placed at the
beginning of the definition. This is the format used throughout the book for defining
functions.

Parameters. Since a function specializes in performing a task, which is usually a cal-
culation, it cannot be expected that it is also responsible for reading and printing
data. Therefore, it is necessary to provide the data that it requires to perform the
calculation. These data are called parameters.

In this vein, parameters are the data sent to the function to perform the task for
which it was designed. For instance, if a function is designed to calculate the facto-
rial, it is necessary to pass the number for which it is desired to find the factorial as
a parameter. If a function is designed to calculate a power, it is necessary to provide
it with the base and the exponent.

The parameter declaration is part of the function definition. They are enclosed
in parentheses, indicating the data types and identifiers that the function will
receive. These declarations are constituted as local variables of the function. In
the definition:

Real power(integer base, integer exponent)

It expresses that the power function will receive two integer-type data and store
them in the variables: base and exponent.

In flowchart, a function does not have an explicit definition. However, in this docu-
ment, it is differentiated from a program by including an input/output symbol to
receive the parameters and another to return the result, as shown in Figure 106.

223

SUBPROGRAMS

Figure 106. Flowchart of a Function

While the definition is essential since it gives existence and identity to the function,
the implementation is what allows the function to perform an operation.

Implementation. It consists of a set of lines of code or instructions that process the
data received as parameters and produce the result expected by the program in-
voking the function. The function body starts aft er the definition and ends with the
reserved word end followed by the function name. However, in the penultimate line,
the instruction Return or Deliver must appear, followed by a value or an expression,
as shown in examples 54 and 55.

Example 54. Sum Function

Design a function to add two integers

This example aims to show the structure of a function, clearly presenting its defini-
tion, parameters, implementation, and return.

The function sum receives two integer parameters, adds them, and returns the re-
sult, as shown in Table 83.

224

Algorithm Design

Table 83. Pseudocode for the Sum Function

1 Integer sum(integer a, integer b)

2 Integer result

3 result = a + b

4 Return result

5 End sum

Note that the function is defined as an integer type, which means that the data it
will return will be of this type. Consequently, the local variable declared to store the
result is of the integer type. As for the parameters, although they are of the same
type, it is necessary to specify for each one that they are integers since this is not
always the case.

Variables that are declared in the body of a function are local in scope, and therefore
can only be accessed within the function. Once the execution ends, the variables
cease to exist.

Example 55. Factorial Function

Design a function to calculate the factorial of a positive integer. It is known that the
factorial of 0 is 1, and the factorial of any number n greater than 0 is the product of
the numbers between 1 and n.
The factorial function requires one parameter: the number, and it returns another
number: the factorial. Its implementation includes a loop that calculates the pro-
duct from 1 to n, as shown in the pseudocode in Table 84.

Table 84. Pseudocode for the Factorial Function

1 Integer factorial(integer n)

2 Integer fac = 1, counter

3 For con = 1 to n do

4 fac = fac * counter

5 End for

6 Return fac

7 End factorial

225

Subprograms

6.1.2 Calling a Function

The invocation or call to a function is done by writing its name followed by the list of
parameters that it requires, as follows:

Function_name(parameters)

Example:

Add(123, 432)
Factorial(5)

When an algorithm or program is executed, and a function is invoked, the execution
control passes to the function. In the function’s execution, the first task performed
is the declaration of local variables and their initialization with the data provided
as parameters. Therefore, it is essential to note that the arguments written when
invoking the function and the list of parameters defined in the function design must
match in type and quantity; otherwise, an error will occur, and the function’s execu-
tion will be canceled.

When the function’s execution encounters the return statement, the control returns
exactly to the line where the function was invoked with the result of the calculation
performed.

The result returned by a function can be stored in a variable, sent directly to an ou-
tput device, or used as an argument to another function, as shown in expressions a,
b, and c, respectively.

x = factorial(8)
Write “Factorial of 8:”, factorial(8)
add(factorial(3), factorial(4))

Example 56. Arithmetic Operations

Design the main algorithm and the necessary functions to perform arithmetic ope-
rations: addition, subtraction, multiplication, and division of two numbers.

To solve this exercise, it is necessary to design four functions, one for each opera-
tion, and a main program that calls the corresponding function based on the user’s

226

Algorithm Design

request. Since each function is exclusively responsible for performing the calcula-
tion, the main program must handle reading the numbers, the operation to be per-
formed, and displaying the result.

In the implementation of programs in some languages, it is required to define the
functions before invoking them. To develop good programming practices, in this
exercise and the following ones, the functions or procedures are designed first and
at the end of the main program.

The functions and the program for this exercise are presented in Tables 85, 86, 87,
and 88. The add function has already been designed and appears in Table 83, so it
is not included here.

Table 85. Pseudocode for the Subtract Function

1 Integer subtract(integer a, integer b)

2 Integer difference

3 result = a – a

4 Return difference

5 End subtract

Table 86. Pseudocode for the Multiply Function

1 Integer multiply(integer a, integer b)

2 Integer product

3 result = a * b

4 Return product

5 End multiply

Table 87. Pseudocode for the Divide Function

1 Integer divide(integer a, integer b)

2 Real quotient = 0

3 If b != 0 then

4 quotient = a / b

5 End if

6 Return quotient

7 End divide

227

Subprograms

Table 88. Pseudocode for the Arithmetic Operations Algorithm

1 Begin

2 Integer x, y, opt

3 Read x, y

4 Write “1. Add 2. Subtract 3. Multiply 4. Divide.”

5 Read opt

6 Switch opt do

7 1: Write “summation =”, sum(x,y)

8 2: Write “Difference =”, subtract(x,y)

9 3: Write “Product =”, multiply(x,y)

10 4: If y = 0 then

11 Write “Error, divisor = 0”

12 Else

13 Write “Quotient =”, divide(x,y)

14 End if

15 End switch

16 End sum

In lines 7, 8, 9, and 13 the calls to the previously defined functions are made. Althou-
gh the divide function includes a conditional to avoid the error of dividing by zero,
the data validation is done in the main algorithm (line 10) because the function can
only return one value: the quotient, not an error message.

6.1.3 More Examples of Functions

Example 57. Power Function

Exponentiation is a mathematical function that consists of a base and an exponent:
an. The result is the product of multiplying the base by itself as many times as the
exponent indicates, as explained in Example 40.

This function requires two parameters: the base and the exponent. Its implementa-
tion includes a loop to calculate the product from one to the absolute value of n and
a decision to determine whether the exponent is negative, in which case the result is
one divided by the product obtained.

228

Algorithm Design

In Table 89, the function to obtain the absolute value of a number is designed. In Ta-
ble 90, the power function, and in Table 91, the main algorithm that invokes power.

Table 89. Pseudocode for the Absolute Value Function

1 Integer absolutevalue (integer n)

2 If n < 0 then

3 n = n * -1

4 End if

5 Return n

6 End absolutevalue

Table 90. Pseudocode for the Power Function

1 Real power(integer a, integer n)

2 Integer p= 1, x

3 For x = 1 to absolutevalue(n) do

4 p = p * a

5 End for

6 If n < 0 then

7 p = 1 / p

8 End if

9 Return p

10 End power

Table 91. Pseudocode for the Main Algorithm for Exponentiation

1 Begin

3 Integer b, e

4 Read b, e

5 Write “Power = “, power(b, e)

6 End algorithm

This example shows how the use of functions facilitates solving the problem. In this
case, the main algorithm is responsible for reading the data and displaying the result,
the power() function is responsible for calculating the result, and the absolute value()
function makes it possible to calculate both positive and negative exponents.

To verify that a function produces the expected result, the same method is followed
for the other algorithms: it is executed step by step, and the data stored in the varia-

229

Subprograms

bles is recorded. To verify the correctness of the overall solution, each variable and
function is placed as a column to record the result it returns, as shown in Tables 92
and 93.

Table 92. Verification of the Power Function

Execution a n x Absolutevalue(s) p

1

4 3 1

1 3 4

2 16

3 64

2

3 -4 1

1 4 3

2 9

3 27

4 81

1/81

Table 93. Verification of the Algorithm to Calculate a Power

Execution b e Power(b, e) Output
1 4 3 64 Power = 64
2 3 -4 1/81 Power = 1/81

Example 58. Simple Interest Function

Design a function to calculate the simple interest of an investment.

Simple interest is the benefit obtained by investing a certain amount of capital.
Three elements are involved in this operation: the capital invested, the interest rate
or ratio per unit of time, and the agreed periods in the investment.

For example: Juan lends 10 million pesos to Carlos for a period of six months, and
Carlos agrees to pay an interest rate of 2% per month at the end of the six months.
How much will Juan receive in interest?

The formula for calculating simple interest is:
I = C * R * T

230

ALGORITHM DESIGN

Where (expressed in Spanish):
I: Simple interest
C: Invested capital
R: Interest rate or ratio, expressed as a percentage
T: Time

Using the data from the example, we have:

C = 10,000,000
R = 2%
T = 6
Thus:

I = 10,000,000 * 2 * 6 / 100 = 1,200,000

Now, the simple interest formula needs to be expressed as a subroutine or function,
as shown in the flowchart notation in Figure 107.

Figure 107. Flowchart of the Simple Interest Function

231

SUBPROGRAMS

Figure 108 shows the flowchart of the main algorithm for calculating the simple in-
terest of an inversion. It is responsible for reading the data, invoking the function,
receiving the result, and finally displaying it to the user.

In this example, a variable i is used in both the main program algorithm and the
function. It should be noted that these are two independent variables because they
are declared as local variables in each algorithm. Therefore, one does not exist in
the scope of the other.

Figure 108. Flowchart for the Simple Interest Algorithm

The results of the step-by-step verification of this algorithm are presented in Table 94.

232

Algorithm Design

Table 94. Verification of the Solution for Calculating Simple Interest

Execution C R T I Output
1 10000000 2% 6 1200000 Interest: 1200000

2 20000000 1.5% 12 3600000 Interest: 3600000

Example 59. Final Grade Function

At Buena Nota University, the final grades for each subject are obtained by avera-
ging three partial grades, where the first and second grades are equivalent to 30%
each and the third to 40% of the final grade. A function is required to perform this
calculation.

According to the above, if a student receives the following grades:

Grade 1 = 3.5
Grade 2 = 4.3
Grade 3 = 2.5

Their final grade will be:
Final grade = 3.5 * 30/100 + 4.3 * 30/100 + 2.5 * 40/100
Final grade = 3.3

In general, the grade is obtained by applying the formula:

Final grade = grade 1 * 30/100 + grade 2 * 30/100 + grade 3 * 40/100

The function to perform this task is shown in Table 95.

Table 95. Pseudocode for the Final Grade Function

1 Real finalgrade (real g1, real g2, real g3)

2 Real fg

3 fg = g1 * 30/100 + g2 * 30/100 + g3 * 40/100

4 Return fg

5 End finalgrade

233

Subprograms

Example 60. Triangle Area Function

The area of a triangle is equivalent to half the product of its base times its height.

Area = base * height / 2

Therefore, the function for calculating the area of the triangle requires the base and
height to be provided. The pseudocode for this function is shown in Table 96.

Table 96. Pseudocode for the Triangle Area Function

1 Real areatriangle(real base, real height)

2 Real area

3 area = base * height / 2

4 Return area

5 End areatriangle

Example 61. Leap Year Function

In the Gregorian calendar, there is a leap year13 every four years, except for the last
one of a century, which is not divisible by 400. Design a function to determine if a
year is a leap year.

Take, for example, the year 1700. It is divisible by 4 and by 100, but it is not exactly
divisible by 400; therefore, it is not a leap year. Meanwhile, the year 1904 is divisible
by 4, but not divisible by 100, so it is a leap year. The year 2000 is divisible by 4, by
100, and by 400, so it is a leap year.

The condition for a leap year is: that it is divisible by 4 and 400 but not by 100. That
is, any year divisible by 4 that is not the last of a century is a leap year, but if it is the
last year of a century, it must be divisible by 400. The function is shown in Figure 109.

13 A leap year has 366 days as opposed to the others with 365. This additional day is included in

February, which in this case has 29 days.

234

ALGORITHM DESIGN

Figure 109. Flowchart for the Leap Year Function

Example 62. Count Characters Function

Design a function that receives as parameters an array of characters and a charac-
ter. The function must count the number of times the character appears in the array
and return the counter.

For example, if the array consists of the characters: a, b, c, d, e, d, c, b, a and the
character to search for is b, it appears twice in the array.

The function must iterate through the vector and, in each position, compare its con-
tent with the reference character, and if they match, it increments the counter. The
problem is that for the traversal, it seems necessary to know the size of the vector,
and that information is not available.

235

Subprograms

Some programming languages have an internal function that returns the size of a
vector, some others report a false or null value when trying to access a position that
does not exist in the vector. In this case, to avoid any possibility of error, a third pa-
rameter corresponding to the size of the vector is included, so that the traversal can
be performed without difficulty. This function is shown in Table 97.

Table 97. Pseudocode for the Character Count Function

1 Real countcharacters(character v[], character char, integer n)

2 Integer i, count = 0

3 For i = 1 to n do

4 If char = v[i] then

5 count = count + 1

6 End if

7 End for

8 Return count

9 End countcharacters

Example 63. Adding Days to a Date

A function is required to add a certain number of days to a date (year, month, day).

Suppose the date is: 2000/07/01, and 5 days are added. The date obtained will be:
2000/07/06. In this case, only the days are added. But if the date is 2005/12/28 and 87
days are added, what will be the new date? What operations should be performed?

To perform this addition, the first step is to extract the years and months that are in
the number of days, thus obtaining data in date format. The purpose of this is to add
days to days, months to months, and years to years.

Years = 87 / 365 = 0
Months = 87 – (years * 365) / 30 = 2
Days = 87 - (years * 365) – (months * 30) = 27

From this, the operation to perform is:
2005/12/28 +
0000/02/27

236

Algorithm Design

Now, the days are added: 28 + 27 = 55. Since the result is greater than 30, it is sepa-
rated into months and days: 1 month and 25 days. These days are recorded, and 1 is
added to sum it with months.

Months are added: 12 + 2 + 1 = 15. Since the result is greater than 12, it is divided into
years and months: 1 year and 3 months. The 3 months are recorded, and 1 is added
to sum it with years.

The years are added: 2005 + 0 + 1 = 2006.

Therefore, the solution is:

These operations must be expressed algorithmically and placed in a function that
can be invoked as many times as needed. Something very important to note is that,
by definition, a function returns a value, and in this case, it is required to return three
values (year, months, and days). The solution consists of grouping the data using a
vector, where the first position will correspond to the year, the second to the mon-
ths, and the third to the days. The vector is then set as a parameter, and similarly, the
function will return a vector as a result. The pseudocode for this function is shown
in Table 98.

Table 98. Pseudocode for the Function to Add Days to a Date

1 Integer[] adddaystodate(Integer d[], Integer days)

2 Integer aux[3], nd[3]

3 aux[1] = days / 365

4 days = days Mod 365

5 aux[2] = days / 30

6 aux[3] = days Mod 30

7 nd[3] = d[3]+aux[3]

8 nd[2] = d[2]+aux[2]

9 nd[1] = d[1]+aux[1]

10 If nd[3] > 30 then

11 nd[3] = nd[3]-30

12 nd[2] = nd[2] + 1

13 End if

14 If nd[2] > 12 then

237

Subprograms

15 nd[2] = nd[2]-12

16 nd[1] = nd[1] + 1

17 End if

18 Return nd[]

19 End adddaystodate

This function receives a vector of three integers and a variable as parameters. In-
ternally, it declares two vectors, one auxiliary vector to discriminate the content of
the received variable into years, months, and days, and a second vector to store the
date generated as a result. Initially, the positions of the vectors are added directly,
then the validity of the days and months is verified, and if they are not valid, the co-
rresponding adjustment is made.

Table 99 shows the behavior of the vectors when executing the function.

Table 99. Verification of the Function to Add Days to a Date

Vector d[] Days Vector aux[edit] Vector nd[]
d[1] d[2] d[3] aux[1] aux[2] aux[3] nd[1] nd[2] nd[3]

2005 12 28 87 0 2 27 2005 14 55

15 25

2006 3 25

6.1.4 Proposed Exercises

Design functions for the following approaches

1. Determine the minimum grade a student must obtain in the final exam of a
subject to pass it with a minimum grade (3.0) based on the grades obtained
from two midterms exams. It is known that each midterm exam is equivalent to
30%, and the final exam is equivalent to 40% of the final grade.

2. Calculate the perimeter of a rectangle

3. Calculate the area of a circle

4. Calculate the circumference of a circle

5. Calculate the volume of a cylinder

238

Algorithm Design

6. Determine the amount of paper required to completely cover a box

7. Establish an athlete’s speed in km/h, knowing it took him/her x minutes to
complete a lap around the stadium, with a distance of n meters.

8. Subtract a number of days from a date in year/month/day format

9. Add a number of years, months, and days to a date

10. Find the difference between two dates expressed in years, months and days.

11. Calculate the future value of an investment with compound interest

12. Determine if a number is prime

13. Find out if a number n is part of the Fibonacci series

14. Evaluate a date and report whether it is valid or not. Consider months with 28,
30, and 31 days, and leap years.

15. Calculate the selling price of a product by applying 30% profit on cost and 16%
value added tax (VAT).

16. Calculate the least common multiple of two numbers

17. Calculate the sum of the first n numbers

18. Reverse the order of the elements in a vector

6.2 PROCEDURES

A procedure is a set of lines of code written separately from the main algorithm with
the purpose of requesting its execution from various parts of the algorithm or pro-
gram. This makes the code more organized and easier to understand, write, correct
and maintain.

Procedures, like functions, perform a specific task, but unlike functions, they are not
designed to carry out calculations; therefore, they do not return any value.

The design of a procedure includes its definition and implementation. In the defi-
nition, a name is assigned, and the parameters it will receive are specified. In the

239

Subprograms

plementation, detailed instructions that will allow it to fulfill its task are written.
The general form to design a procedure is:

Procedure_name(parameters)
Instructions
End procedure_name

Examples:

Print(integer a, integer b, integer c)
Write a
Write b
Write c
End print

If variables are declared within the body of the procedure, they have a local scope.

To invoke a procedure, its name and the list of parameters are written, considering
that these must match the number and type of the list of parameters of the proce-
dure definition. When the execution of an algorithm encounters the invocation of
a procedure, it executes its instructions, and once completed, it returns to the line
following the invocation.

Example 64. Multiplication Table Procedure

An algorithm is required to generate multiplication tables for the number the user
enters, the execution ends when 0 is entered.

In this exercise, two tasks can be observed: on one hand, managing the inputs, that
is, reading the number and deciding whether to generate the table or end the execu-
tion of the algorithm, and repeating this operation until a 0 is entered; on the other
hand, generating the multiplication table for the entered number. The second task
can be delegated to a procedure

This procedure receives the number for which the table is required as a parameter
and is responsible for carrying out the iterations and displaying the product in each
of them. The pseudocode for this procedure is shown in Table 100.

240

Algorithm Design

Table 100. Procedure for Multiplication Table

1 Multiplytable(Integer n)

2 Integer i

3 For i = 1 to 10 do

4 Write n, “*”, i, “ =”, n*i

5 End for

6 End multiplytable

The main algorithm, from which this procedure is invoked, is presented in Table 101.
The call to the procedure is made from line 5.

Table 101. Pseudocode for the Algorithm to Generate Multiplication Tables

1 Begin

2 Integer n

3 Do

4 Read n

5 Multiplytable(n)

6 While n != 0 do

7 End algorithm

Example 65. Print Vector Procedure

Design a procedure that can be invoked as often as desired to list the data of a vector.

This procedure must receive as parameters the vector and the number of elements
it contains, iterate through it, and display each element. The N-S diagram of this
procedure is shown in Figure 110.

Figure 110. N-S Diagram for the Print Vector Procedure

Printvector(Integer v[], integer n)

Integer: i

For i = 1 to n do

Write v[i]

End for

End Printvector

241

Subprograms

Example 66. Write Date Procedure

Design a procedure that receives three integers corresponding to the month, day,
and year, and displays the date as text.

This procedure must determine the name of the month and then format the date
properly. For example, if the input values are: month = 2, day = 11, and year = 2012,
it should display: “February 11, 2012.” The pseudocode for this procedure is shown in
Table 102.

Table 102. Pseudocode for the Procedure to Write Date

1 Writedate(integer m, integer d, integer y)

2 String monthname

3 Switch m do

4 1: monthname = “January”

5 2: monthname = “February”

6 3: monthname = “March”

7 4: monthname = “April”

8 5: monthname = “May”

9 6: monthname = “June”

10 7: monthname = “July”

Table 102. (continued)

1 8: monthname = “August”

2 9: monthname = “September”

3 10: monthname = “October”

4 11: monthname = “November”

5 12: monthname = “December”

6 End switch

7 Write monthname, d “,”, y

8 End Writedate

Example 67. Procedure to Display a Sequence

Design a procedure to generate the first n terms of the sequence created by the
expression: x2 – x.

242

Algorithm Design

The procedure consists of creating a loop from 1 to n and applying the expression.
The results from the sequence:

0, 2, 6, 12, 20, 30, …
The pseudocode is shown in Table 103.

Table 103. Pseudocode for the Procedure to Display a Sequence

1 showsequence(integer n)

2 Integer x, t

3 For x = 1 to n do

4 t = x * x – x

5 Type x

6 End for

7 End showsequence

243

7. SEARCH AND SORTING

A man who does not know
the way to the sea

ought to seek a river
to accompany him.

Plautus

Search and sorting are two fundamental tasks in data management, especially
when dealing with large volumes. Both operations are performed based on referen-
ce data, commonly called a key. Searching allows finding a particular element in a
set while sorting consists of organizing the data according to a criterion, making it
easier to locate the element required or to identify relationships between the data.

In this chapter, search and sorting algorithms are studied and explained in detail,
supported by examples and graphs that facilitate understanding.

7.1 SEARCH ALGORITHMS

Search is a crucial operation when handling large datasets where locating an ele-
ment is not an easy task, as stated by Lopez, Jeder and Vega (2009: 129).

There are two methods to search for data in a vector: sequential or linear search,
and binary search. The former is easier to implement but may take more time, the
latter is more efficient but requires the vector to be sorted.

7.1.1 Linear Search
This method consists of taking key data that identify the element being searched for
and traversing the entire array, comparing the reference data with the data of each
position.

Suppose there is a list of students, and you want to locate the one identified by
the number 27844562. The search consists of comparing this number with the iden-
tification of each student in the list. The search will end in the event of finding a
coincidence in the numbers or if, at the end of the list, no identification equal to the

244

ALGORITHM DESIGN

searched number is found, in which case it is concluded that the data does not exist
in the vector.

Figure 111 shows the flowchart of a function with the general steps for performing a
sequential search in a vector.

The function receives as parameters the vector and the key of the element to be
searched and traverses the vector until the element is found, in which case the po-
sition is recorded in the variable pos or until the end of the vector is reached. When
the algorithm finishes, it returns the pos variable. If the data was found, it contains
the position it occupies in the vector; otherwise, it reports the value minus one (-1),
indicating that the data is not in the vector.

Figure 111. Flowchart for the Linear Search Algorithm

245

Searching And Sorting

7.1.2 Examples of Linear Search

Example 68. Search for a Student

A teacher stores the data of their student in three vectors: code, name, and grade,
as shown in Figure 112. An algorithm is required to query a student’s grade based
on their code.

Figure 112. Student Data Stored in Vectors

1 001 1 Luis Domínguez 1 4.5
2 002 2 Daniela Flórez 2 3.8
3 003 3 Jesús Bastidas 3 2.5
4 004 4 Camilo Chaves 4 4.8
5 005 5 Diana Chaves 5 4.6
6 006 6 Jackeline Riascos 6 4.2
… … … … … …

Code[] Name[] Grade[]

By using the linearsearch() function and passing the code vector, its size, and the
student’s code as parameters, it is possible to find the position of the student’s data
in the vectors. The algorithm is shown in Figure 113, which assumes the existence of
a procedure to fill the data in the vectors.

246

ALGORITHM DESIGN

Figure 113. Flowchart for the Student Search Algorithm

Example 69. Check Balance

In a hypothetical ATM, when a customer requests their account balance, they swipe
the card, the reader takes the account number, and the system searches for that
number in the database. If it finds it, it reports the balance; if not, it displays an error
message. Assuming the database consists of three vectors: account number, card-
holder and balance. Design an algorithm to check an account balance.

In this algorithm, the account number is read, and the linearsearch() function is in-
voked by providing the vector with the account numbers and the read data. This
function performs the search and returns the position where the corresponding ac-
count data is located. If the data returned by the function is a positive integer, the
data from all vectors are displayed. If it is -1, it means the account does not exist, and

247

Searching And Sorting

a message is displayed informing of this situation. The pseudocode for this algori-
thm is shown in Table 104

Table 104. Pseudocode for the Algorithm to Check Balance

1 Begin

2
Integer num, pos, account[1000]
String: holder[1000]
Real: balance[1000]

3 Fillindata()

4 Read num

5 pos = linearsearch(account[], 10000, num)

6 If pos > 0 then

7 Write “Account:”, account[pos]

8 Write “Holder: “, holder[pos],

9 Write “Balance: “, balance[pos]

10 Else

11 Write “Account number not found”

12 End if

13 End algorithm

7.1.3 Binary Search

This method is more efficient than sequential search but can only be applied on
sorted vectors or lists of data, as confirmed by López, Jeder, and Vega (2009: 130)

In binary search, the search is not conducted from beginning to end; instead, the
search space is progressively narrowed until the searched element is reached. The
first comparison is made with the middle element of the array. If it is not the sear-
ched data, it is decided whether to search in the lower half or the upper half, de-
pending on whether the key is smaller or greater than the element in the middle.
Half of the corresponding vector is taken as search space and proceeds in the same
way; it is compared with the middle element. If that is not the searched element, a
new search space is taken corresponding to the lower or upper half of the previous
space, it is compared again with the middle element, and so on, until the element is
found, or the search space is reduced to one element.

In binary search, the number of elements making up the search field is halved with
each iteration, as follows:

248

Algorithm Design

n for the first iteration (n = vector size),
n/2 for the second,
n/22 for the third, and
n/23 for the fourth.

In general, the search space in the i-th iteration is made up of n/2i-1 elements.

Assume a vector v with 20 elements arranged d in ascending order, as shown in
Figure 114, where the number 10 is searched. (key = 10).

The first iteration takes the entire vector as the search space and locates the middle
element. To determine which is the middle element, the index of the lower endpoint
is added to the index of the upper endpoint of the search space and divided by two.

(1 + 13) / 2 = 7

It is checked if the key is in the middle element:

key = v[7]?
10 = 14?

Figure 114. Flowchart for the Linear Search Algorithm

1st Iteration Space
2nd Iteration Space

3rd Iteration Space
2 4 6 8 10 12 14 16 18 20 22 24 26
1 2 3 4 5 6 7 8 9 10 11 12 13

Se
co

nd

co
m

pa
ris

on

Th
ird

co

m
pa

ris
on

Fi
rs

t
co

m
pa

ris
on

Since the data is not in position 7, a new search space is defined corresponding to the
lower half of the vector, given that the key (key = 10) is smaller than the middle element
(v[7] = 14). The space for the second comparison is between positions 1 and 6.

The middle is recalculated:
(1 + 6) / 2 = 3

249

Searching And Sorting

Now the middle element is the one in position 3, and it is checked if this is the data
being searched for:

key = v[3]?
10 = 6?

Since the data is not found at this position either, a new search is performed, this
time taking the upper half of the space because the key is greater than the data in
the middle: 10 > 6.

The new search space comprises elements between positions 4 and 6. The middle
element is recalculated:

(4 + 6) / 2 = 5
The key is compared with the element of the middle position

key = v[5]?
 10 = 10?

The values are equal; the data was found in this iteration. The search ends. Three
comparisons were needed to find the element.

The function to perform the binary search receives the vector with the data, the size
of the vector, and the data to be searched or search key as parameters. The pseudo-
code is shown in Table 105.

Table 105. Pseudocode for the Binary Search Function

1 Integer binarysearch(integer v[], integer n, integer key)

2 Lower Integer = 1, upper = n, middle, pos = -1

3 While lower <= upper and pos < 0 do

4 middle = (lower + upper) / 2

5 If v[middle] = key then

6 pos = middle

7 Else

8 If key > v[middle] then

9 lower = middle + 1

10 Else

11 upper = middle – 1

250

Algorithm Design

12 End if

13 End if

14 End while

15 Return pos

16 End binarysearch

The function declares four local variables, two to maintain the limits of the search
space: lower and upper. These start at 1 and n, respectively, which allows the first
iteration to be applied over the entire vector. The variable middle is updated at each
iteration, and its purpose is to identify the data located at the center of the search
space to compare it with the key. Finally, the variable pos is used to store the posi-
tion of the element in case of finding it; it is initialized to -1, indicating that the data
has not been found. The loop has two conditions: that the lower limit is less than the
upper limit, that is, there is a search space, and that the data has not been found.
Once the data is found, the variable pos takes a positive value, and the loop stops
executing.

At the end of the loop, the variable pos is returned. If it has a positive value, it corres-
ponds to the position where the searched data is found. If it contains -1, it means the
data is not in the vector.

7.1.4 Binary Search Examples

Example 70. Winning Number

The Mundo Rico lottery records the number of tickets sold and the place where they
were sold in ascending order. At the time of playing the lottery, once the winning
number is known, it is required to immediately know the place where it was sold.
Design an algorithm to perform this query.

The data is stored in a two-vector structure as shown in Figure 115. Since the num-
bers are sorted, the binary search algorithm can be applied. It will find the number
much faster than if a linear search was used.

251

Searching And Sorting

Figure 115. Number of Lottery Tickets and Sales Location

1 001 1 Pasto
2 002 2 Medellín
3 003 3 Manizales
4 004 4 Cali
5 005 5 Santa Marta
6 006 6 Bogotá

… … … …

Number[] Place[]

The operations to be carried out in this exercise are: reading the winning number,
passing it to the search function, and displaying the results. The function provides
the position where the data is found; otherwise, it will report that the data is not
found. This is interpreted as an unsold number. Reading data and printing results
are actions that the main algorithm must perform. See Table 106.

Table 106. Pseudocode for the Winning Number Algorithm

1 Begin

2 Integer number[1000], place[1000], winner, pos

3 Fillindata()

4 Read winner

5 pos = binarysearch(number[], 1000, winner)

6 If pos> 0 then

7 Write “The number: “, winner, “ was sold at: “, place[pos]

8 Else

9 Write “The number was not sold”

10 End if

11 End algorithm

In line 3 of the algorithm, a procedure is invoked to fill the data, ensuring that the
vectors contain data, although its implementation is not included. In line 5, the bi-
narysearch() function is invoked, sending the vector containing the numbers, its
size, and the winning number as parameters.

252

Algorithm Design

Example 71. Medical Record

At the Curatodo clinic, there is an index of medical records using two vectors: the
first records the medical record number, and the second the patient’s identification.
An algorithm that reads the patient’s identification and reports the medical record
number is required.

As seen in the previous examples, in both sequential and binary search, once the
function is available, it can be used for any vector. In this case, the algorithm basica-
lly consists of reading the patient’s identification number, invoking the function, and
displaying the vector data at the position reported by the function or, failing that, an
“Identification not found” message. The algorithm is shown in Table 107.

Table 107. Pseudocode for the Medical Record Algorithm

1 Begin

2 Integer identification[1000], record[1000], idnumber, pos

3 Fillindata()

4 Read idnumber

5 pos = binarysearch(Identification[], 1000, idnumber)

6 If pos> 0 then

7 Write “The patient’s medical record is: “, record[pos]

8 Else

9 Write “No medical record found for the patient”

10 End if

11 End algorithm

7.1.5 Proposed Exercises

1. The telephone directory information is stored in a 3-column array. The first
column contains the last name, the second the first name, and the third
the phone number. An algorithm is required to search for a person’s phone
number by using their last name and first name as the key.

2. The list of books available in a library is stored in a 5-column array. The first
column contains the author, the second the title, the third the publisher,
the fourth the year, and the last, the signature. Design the algorithm and the
search function by title.

253

Searching And Sorting

3. On election day, at each polling station, there is a list of people who will vote
at that station. The data is stored in two vectors; the first contains the ID card
number, and the second the name. An algorithm is required that enters a
person’s ID card number and reports whether they can vote at that polling
station.

4. The payroll of the company BuenSalario is recorded in two vectors and one
array. The first vector stores the ID number, and the second the name. The
array stores the following data: base salary, deductions, and net payable.
An algorithm is required that reads an employee’s ID card and displays their
payroll data.

5. In the Todocaro store, data such as the invoice number, customer name,
billing date, and invoice value are stored in vectors. An algorithm is required
that reads the invoice number and displays the other data.

6. The communications company Línea Segura records the origin, destination,
date, time, and duration of all calls made by its users. It uses five vectors for
this purpose. An algorithm is required to check if a specific phone has made a
call to a destination and, if so, provides the date, time, and duration of the call.

7. The airline company Vuelo Alto maintains information about all its
flight routes in a database with details such as: places of origin and
destination, schedule, and price. It uses an array where each column
is dedicated to one of the mentioned pieces of information. Design
an algorithm to check if a flight exists between a user-provided
origin and a destination, and if so, retrieve information about it.

7.2 SORTING ALGORITHMS

The data in a vector, a list, or a file are sorted when each element occupies the co-
rrect position according to its value, a key data, or criterion (this document only ad-
dresses the sorting of vectors). If each element of the vector, other than the first one,
is greater than the previous ones, it is said to be sorted in ascending order, while if
each element, other than the first one, is smaller than the previous ones, it is sorted
in descending order.

In a small data set, the order in which they are presented may be irrelevant, but
when the amount increases, the order becomes important. How useful would a dic-
tionary be if it were not sorted? Or the telephone directory?

254

ALGORITHM DESIGN

Baase and Van Gelder (2002: 150) mention that sorting data was one of the main
concerns of computer science, proof of which is the number of sorting methods that
have been designed. This chapter explains the most commonly used algorithms for
this purpose.

 7.2.1 Swap Algorithm

This algorithm is not the most eff icient, but it is highly educational; therefore, it is
commonly used in introductory programming courses. The method involves taking
each element and comparing it with those to its right. Whenever a pair of elements
that do not meet the applied sorting criterion is identified, they are swapped. The
element that corresponds to a specific position in each iteration is found.

Consider vector v in Figure 116. To sort the numbers in ascending order, the first
element v[1] is taken and compared with v[2]. If v[1] is less than v[2] they are in order;
however, if v[1] > v[2] they are out of order and must be swapped.

Figure 116. Exchange Algorithm Comparisons of the First Element

As shown in the figure, to swap two elements in a vector, it is necessary to use an
auxiliary variable and perform three assignments:

aux = v[1]
v[1] = v[2]
v[2] = aux

255

Searching And Sorting

After this swap, v[1] is compared with v[3]. If they are not sorted, the swap is conduc-
ted, followed by comparing v[1] with v[4], and so on, until v[1] is compared with v[n].
More detailed explanations of this process can be found in Joyanes (2000: 248) and
Chaves (2004: 235).

The instructions shown in Table 108 are executed to compare the first element of
the vector with all the subsequent ones and position the corresponding value in the
first spot of the sorted vector.

After executing the loop and finding the value corresponding to the first position
of the sorted vector, the same process is repeated for the second position, then
the third, and so on until the penultimate one. Since each position requires a pass
through the elements on the right, it is necessary to use two nested loops.

Table 108. Sorting by Swap Locating the First Element

1 For j = 1 to n do

2 If v[1] > v[j] then

3 aux = v[1]

4 v[1] = v[j]

5 v[j] = aux

6 End if

7 End for

In summary, the swap method consists of implementing a traversal for the vector
where, for each element, a second loop is made, in which it is compared with all the
subsequent elements. When the elements are not sorted, a swap is made. Each ite-
ration of the outer loop sorts one position of the vector. Table 109 shows a function
for sorting an integer vector using this method. The function receives an unsorted
integer vector and its size as parameters, applies the sorting algorithm, and returns
the sorted vector.

The first loop starts at the first element and ends at the penultimate one. The se-
cond loop starts with the element following the one to be sorted (determined by the
variable of the first loop) and ends at the last position

256

ALGORITHM DESIGN

Table 109. Function to Sort a Vector sing the Swap Method

1 Integer[] swap(integer v[], Integer n)

2 Integer i, j, aux

3 For i = 1 to n-1 do

4 For j = i+1 to n do

5 If v[i] > v[j] then

6 aux = v[i]

7 v[i] = v[j]

8 v[j] = aux

9 End if

10 End for

11 End for

12 Return v[]

13 End swap

7.2.2 Selection Sort Algorithm

This method is similar to the previous one in terms of traversing a vector and com-
parisons but with fewer swaps. In the swapping method, each time two positions
are compared, and these are not sorted, the data is swapped so that in the same
traversal, there can be several swaps before the number is placed in its correct po-
sition in the sorted vector. In the selection method, each traversal identifies the ele-
ment that belongs to a particular position, and only one swap is made.

Consider the vector in Figure 117, where the swap made for the first position is
shown.

Figure 117. Selection Algorithm – Exchange of the First Element

257

Searching And Sorting

A variable is declared to store the position of the smallest element and is initialized
to 1 to start comparisons in the first position. A traversal is made from the second
position to the last, and each time an element smaller than the one indicated by the
variable is found, the variable is updated.

Being at position i of vector v, the traversal to identify the element corresponding
to that position in the ascending sorted vector is carried out with the instructions
shown in Table 110.

Table 110. Traversal to Select the i-th Element

1 possmallest = i

2 For j = i+1 to n do

3 If v[possmallest] > v[j] then

4 possmallest = j

5 End if

6 End for

7 Aux = v[i]

8 v[i] = v[possmallest]

9 v[possmallest] = aux

As shown in the pseudocode in Table 110, the traversal places the index of the sma-
llest element found in the possmallest variable, and at the end of the traversal, the
swap is made between position i and the position indicated by possmallest.

To sort the entire vector, the variable i needs to move from the first element to the
penultimate one, as shown in Table 111, which presents the function for sorting a
vector using the selection algorithm. This function receives an unsorted vector as a
parameter and returns it sorted.

Table 111. Function to Sort a Vector Using the Selection Method

1 Integer[] selection(integer v[], integer n)

2 Integer: i, j, possmallest, aux

3 For i = 1 to n-1 do

4 possmallest = i

5 For j = i+1 to n do

6 If v[possmallest] > v[j] then

7 possmallest = j

258

ALGORITHM DESIGN

8 End if

9 End for

10 aux = v[i]

11 v[i] = v[possmallest]

Table 111. (Continued)

1 v[possmallest] = aux

2 End for

3 Return v[]

4 End selection

 7.2.3 Bubble Sort Algorithm

Due to the way the traversals and comparisons are made, this is one of the easiest
sorting algorithms to understand and program. However, as explained by Joyanes
(2000: 252), its use is not recommended in soft ware development because of its low
eff iciency.

The sorting technique known as bubble or bubble sort consists of comparing the
first element with the second, and if they do not meet the sorting criterion being
applied, they are swapped. Then, the second element is compared with the third,
and if they are not sorted, they are also swapped. This process continues by com-
paring the third element with the fourth, then the fourth with the fift h, and so on,
until comparing elements v[n-1] with v[n]. As shown in the vector in Figure 118, n-1
comparisons and all necessary swaps are made in a traversal.

Figure 118. Bubble Sort Algorithm – Comparisons of the First Traversal

259

Searching And Sorting

In the first traversal of the vector, since each element is compared with the adjacent
one, if an ascending order is applied, the highest value will progressively move to
the right, reaching the last position. However, the other values will remain unsorted in
the remaining positions. The instructions for a single iteration are shown in Table 112.

Table 112. Traversal to Bubble Up an Element

1 For j = 1 to n-1 do

2 If v[j] > v[j+1] then

3 aux = v[j]

4 v[j] = v[j+1]

5 v[j+1] = aux

6 End if

7 End for

To completely sort the vector, considering that in a comparison, two elements are
sorted, and in an iteration, an element is placed to its sorted position, it is necessary
to make n-1 iterations.

To improve the performance of this algorithm, the number of comparisons and, in
some cases, the number of iterations can be reduced.

Since each iteration takes the largest data and moves it to the right, the first itera-
tion places the largest data in position n, the second iteration places the second
largest data in position n-1, and the third iteration places the next largest data in po-
sition n-1. From this, it follows that in the second iteration, the comparison v[n-1] >
v[n] is unnecessary, as the largest element is already in the last position. Similarly, in
the third iteration, the comparisons v[n-2] > v[n-1] and v[n-1] > v[n] are redundant, as
the final positions are sorted in each iteration. In conclusion, not all iterations need
to reach n-1; the second iteration to n-2, the third to n-3, and so on. In a vector with
many elements, the reduction in the number of comparisons is significant. Table
113 shows the improved traversal for the i-th iteration

Table 113. Improved Iteration to Bubbe Up the i-th Element

1 For j = i to n-i do

2 If v[j] > v[j+1] then

3 aux = v[j]

4 v[j] = v[j+1]

260

Algorithm Design

5 v[j+1] = aux

6 End if

7 End for

On the other hand, a vector may be completely sorted in fewer iterations than n-1,
making the last iterations unnecessary. To avoid this inefficiency, it is monitored
that in each iteration occur swaps. If no swaps occur during the i-th iteration, it in-
dicates that the vector is already sorted, and it is unnecessary to continue with the
remaining iterations. For this purpose, a swap counter or a switch (flag) that changes
the state when a swap is made can be used. Table 114 shows the function for sorting
a vector using the bubble sort algorithm with the two improvements discussed.

7.2.4 Insertion Sort Algorithm
This method involves progressively sorting the elements of the array, starting from
the first elements and continuing until all are sorted. Given the element at position i
(where i starts at 2 and progresses to the end of the array), it is stored in an auxiliary
variable, and this variable is compared with the element to the left. If the elements
are not sorted, the element on the left is shifted to the right. The auxiliary variable is
compared again with the next element to the left. Every element that is not sorted
is shifted one position to the right until an element that is sorted is found, or the
beginning of the vector is reached. Once this traversal is completed, the element
contained in the auxiliary variable is placed in the available position.

Table 114. Function to Sort a Vector Using the Bubble Sort Method

1 Integer[] bubblesort(integer v[], integer n)

2 Integer i = 1, j, aux
Logical: change = true

3 While i < n-1 and change = true do

4 change = false

5 For j = 1 to n-i do

6 If v[j] > v[j+1] then

7 aux = v[j]

8 v[j] = v[j+1]

9 v[j+1] = aux

10 change = true

11 End if

12 End for

13 i = i + 1

261

SEARCHING AND SORTING

14 End while

15 Return v[]

16 End bubblesort

Consider the vector shown in Figure 119. To sort it in ascending order, the content of
the second position is copied to the auxiliary variable. It is then compared with the
first element; since they are not sorted, the value in position 1 is shift ed to position
2. As there are no more elements to the left , the content of the auxiliary variable is
placed in position 1. In this way, the first two positions of the vector are already sor-
ted: v[1] = 13 and v[2] = 17.

Figure 119. Insertion Sort Algorithm – Exchange for the Second Element

Now, the element from the third position is taken, copied to the auxiliary variable,
and compared with the element on the left . Since they are not sorted, the content
from position two is shift ed to position three. It is then compared with the data in
position one, and as this is not sorted, it shift s to the right. Since there are no more
elements on the left , the content of the auxiliary variable is placed in position one.

In summary, the process involves taking the i-th element and placing it in the co-
rrect position in the sorted vector. To achieve this, the space it occupies is freed by
copying it to an auxiliary variable, and the elements greater than it are shift ed to the
right, creating a space in the position where it should be. The instructions in Table
115 move the i-th element to its corresponding position in the sorted vector.

To sort the entire vector, it is needed to repeat the instructions in Table 115 for each
element, starting from the second position to the last position, as shown in Table 116.

Table 115. Instructions for Inserting the i-th Element Into the Correct Position

1 j = i – 1

2 aux = v[i]

3 While v[j] > aux and j > = 1 do

262

Algorithm Design

4 v[j+1] = v[j]

5 j = j -1

6 End while

7 v[j+1] = aux

Table 116. Function to Sort a Vector Using the Insertion Method

1 Integer[] insertion(integer v[], integer n)

2 Integer: aux, i, j

3 For i = 2 to n do

4 j = i – 1

5 aux = v[i]

6 While v[j] > aux and j >= 1 do

7 v[j+1] = v[j]

8 j = j -1

9 End while

10 v[j+1] = aux

11 End for

12 Return v[]

13 End Insertion

This algorithm can improve its efficiency by changing the search method applied
to the left part of the vector. Since the left sub-vector of each element is sorted,
binary search can be used instead of sequential search. This reduces the time the
algorithm takes to find the place that corresponds to the element. This reduction
in search time can be significant for vectors with many elements. Hernández et al
(2001: 53) describe this change in the following steps:

a. Take an element in position i
b. Perform a binary search for its position among the previous positions
c. Shift the remaining elements to the right
d. Insert the element

7.2.5 Donald Shell’s Algorithm

It is an insertion algorithm with decreasing jumps designed by Donald Shell14 and
generally recognized by the name of its creator. It operates similarly to the insertion

14 Donald Shell worked in the engineering division of General Electric and received his Ph.D. in
mathematics from the University of Cincinnati in 1959. In the same year, he published the algorithm
that now bears his name under the title “A High-Speed Sorting Procedure” in Communications of the
ACM.

263

SEARCHING AND SORTING

algorithm, but instead of moving elements by one position at a time, it shift s ele-
ments to several positions at once, allowing them to reach their correct placement
more eff iciently. This method is particularly suitable for vectors with large amounts
of data.

 In this algorithm, an element is taken and compared with those to its left . If an as-
cending order is sought, the elements greater than the reference are shift ed to the
right, and this is placed in its corresponding position. However, instead of compa-
ring it with the element immediately to the left , it is compared with the one that is
x positions behind. The distance x is called the “gap.” In the first iteration, the gap
is half the size of the vector so that elements from the left half are compared with
the elements from the right half, and each swap moves elements across both sides.

In the second iteration, the gap is halved, and for the third one, this process conti-
nues, halving the gap each time until comparisons are made one by one.

To illustrate how this algorithm works, consider a 10-element vector. Then:

Gap = 10/2 = 5

In this case, during the first iteration, comparisons are made with a gap of 5 positions,
meaning v[1] is compared with v[6], v[2] with v[7], and so on, as shown in Figure 120.

Figure 120. Shell Sort Algorithm – First Iteration

In the first iteration, each element on the left side is compared with one on the right
side as the gap divides the vector into two parts.

Comparison Result Swap
V[1] > v[6] True Yes
V[2] > v[7] True Yes
V[3] > v[8] False No
V[4] > v[9] False No
V[5] > v[10] False No

264

ALGORITHM DESIGN

For the second iteration, the gap is updated, taking as a value the fourth part of the
vector’s size, which implies that some elements will involve multiple gaps to the left .

gap = gap/2
gap = 5/2 = 2

Figure 121 shows the vector aft er the first iteration and the comparisons to be made
in the second iteration.

Figure 121. Shell Sort Algorithm – First Iteration

In the second iteration of the analyzed example, the gap = 2, consequently the loop
runs from the third element to the last one. The variable i is initialized at 1, and the
variable aux holds the third element (12). The first comparison is between v[1] and
v[3] (12 < 3 = false). If the elements are in order, the variable follow takes the false
value, the loop while ends and the iterations then proceed with the next element
(v[4]) and so on.

Table 117 shows the pseudocode for any iteration. In this algorithm, each element is
compared with those on its left . The while loop manages the traversal towards the
left , provided that there are elements and the data intended to be inserted is smaller
than the one indicated by index i. If the element in position i is smaller than j, it is
not necessary to continue towards the left since those elements are already sorted.

Table 117. Shell Algorithm – One Iteration

1 For j = (1 + gap) to n do

2 i = j – gap

3 aux = v[j]

4 continue = true

5 While i > 0 and continue = true do

6 If aux < v[i] then

7 v[i + gap] = v[i]

265

SEARCHING AND SORTING

8 i = i – gap

9 Else

10 continue = false

11 End if

12 End while

13 v[i + gap] = aux

14 End for

Figure 122 shows the order of the elements aft er the second iteration with two-by-
two gaps.

Figure 122. Shell Sort Algorithm – First Iteration

In this example, because a small vector (10 elements) was used, the gaps were made
one by one by the third iteration, and then the vector was completely sorted. Arrays
with larger numbers of elements require more iterations.

Table 118 presents a function for sorting a vector by applying the Shell algorithm.

Table 118. Function to Sort a Vector Using the Shell Method

1 Integer[] shell(integer v[], integer n)

2 Integer: aux, gap, i, j
Logical: continue

3 gap = n/2

4 While gap >= 1 do

5 For j = (1 + gap) to n do

6 i = j – gap

7 aux = v[j]

8 continue = true

9 While i > 0 and continue = true do

10 If aux < v[i] then

11 v[i + gap] = v[i]

12 i = i – gap

13 Else

14 continue = false

266

Algorithm Design

15 End if

16 End while

17 v[i + gap] = aux

18 End for

19 Gap = gap/2

20 End while

21 Return v[]

22 End Shell

7.2.6 Quick Sort Algorithm

This algorithm is considered the fastest among those studied in this chapter. It was
designed by Tony Hoare15 and is based on the divide-and-conquer technique, which
suggests that sorting two small lists is faster and easier than sorting a large one
(Joyanes, 2000: 405).

The principle of the quicksort algorithm is the partition of the vector or list into three
smaller parts distributed to the left, center, and right. The center contains the value
used as a reference for partitioning the vector and, thus, a single element.
In general terms, the quicksort algorithm consists of the following operations:

1. Select a reference element called the pivot
2. Traverse the array from left to right, searching for elements larger than the

pivot
3. Traverse the array from right to left, searching for elements smaller than the

pivot
4. Swap each element smaller than the pivot with one larger than the pivot, so

that the smaller values are on the left, larger values are on the right, and the
pivot is in the center.

5. Repeat these operations with each sublist until there are sublists of one
element.

6. Rebuild the list by concatenating the sublist on the left, the pivot, and the
sublist on the right.

Although this algorithm can be implemented iteratively, it is much easier to unders-
tand and implement using recursion, a topic that is explained in the next chapter.
The pseudocode for partitioning the vector is shown in Table 119.

15 His full name is Charles Antony Richard Hoare. He studied at Oxford University and Moscow State
University. He developed the Algol 60 language and designed the Quicksort Algorithm. He worked at
Queen’s University and the Computing Laboratory at Oxford University.

267

Searching And Sorting

The recursive version of this algorithm is explained in detail in section 8.7

Table 119. Function to Partition a Vector

1 Integer[] partition(integer v[], low integer, high integer)

2 Integer: aux, pivot = v[low], m = low, n = high+1

3 While m <= n do

4 Do

5 m = m + 1

6 While v[m] < pivot

7 Do

8 n = n – 1

9 While v[n] > pivot

10 If m < n then

11 Aux = v[m]

12 v[m] = v[n]

13 v[n] = aux

14 End if

15 End while

16 v[low] = v[n]

17 v[n] = pivot

18 Recursive call

19 Return v[]

20 End partition

7.2.7 Merging of Sorted Vectors

This operation is also known as interleaving (Joyanes, 1996: 343) and merging
(López et al., 2009: 135). It involves combining the elements of two sorted vectors or
lists and forming a third vector or list that is also sorted, where the previous order of
the entries is used to obtain a sorted set in less time.

Figure 123 shows two vectors of different sizes and their merger into a third sorted
vector. The algorithm for merging the two sorted vectors consists of a loop that
traverses the two input vectors simultaneously and selects the smallest element
in each iteration to add to the new vector. In the array from which the element is
taken, the index is incremented, while in the other array, it remains constant until an
element is transferred to the new vector. The loop ends when one of the vectors has

268

ALGORITHM DESIGN

been fully copied, and the remaining elements from the other vector are added in
their current order. Table 120 presents the function to perform this task.

Figure 123. Merging Sorted Vectors

Table 120. Function to Merge Sorted Vectors

1 Integer[] merge(integer a[], integer b[], integer m, integer n)

2 Integer: c[m+n], i = 1, j = 1, k = 1, x

3 While i <= m and j <= n do

4 If a[i] <= b[j] then

5 c[k] = a[i]

6 i = i + 1

7 Else

8 c[k] = b[j]

9 j = j + 1

10 End if

11 k = k + 1

12 End while

13 If i <= m then

14 For x = i to m do

15 c[k] = a[x]

16 k = k + 1

17 End for

18 End if

19 If j <= n then

20 For x = j to n do

269

Searching And Sorting

21 c[k] = b[x]

22 k = k + 1

23 End for

24 End if

25 Return c[]

26 End merge

7.2.8 Other Sorting Algorithms

In addition to the six sorting algorithms presented in this section, there are many
more, some more efficient than those studied here and, therefore, more complex,
requiring more advanced knowledge in computer science. Some are mentioned be-
low for readers who want to delve into this topic.

Mergesort: This is a recursive algorithm that applies the divide and conquer princi-
ple similarly to Quicksort. It consists of partitioning the vector or list into two equal
parts, recursively sorting each of them, and then merging them through the process
known as merging sorted sequences or merging sorted vectors.

Heapsort: This algorithm combines the advantages of Quicksort and Mergesort. It
uses a data structure called a heap, which is a complete binary tree from which
some extreme leaves are removed.

Radix Sort: This method involves distributing the elements of the set to be sorted
into several subsets according to a certain criterion; each subset is sorted using any
sorting method and then merging them while preserving the order. For example, su-
ppose there is a large set of invitation cards that need to be organized alphabetically
by the name of the recipient. One can form 26 subsets based on the starting letter of
the name, then sort each heap using, for instance, the insertion method, and finally,
merge the groups starting with the one with the letter A.

7.2.9 A Complete Example

Example 72. Grade List

A teacher manages the list of students and grades using arrays: in an integer vector,
he/she stores the codes, in a string array, the names; and in a four-column array
keeps the grades: three partial grades and the final grade.

270

Algorithm Design

Among the operations the professor performs are: entering the student names, en-
tering the grades as they are generated, calculating the final grade, and listing the
grades; sometimes he/she checks a student’s grades, and sometimes he/she needs
to correct a grade. The list is sorted according to one of these criteria: alphabetical
order by last name or descending order by final grade. Design the algorithm to per-
form the mentioned tasks.

According to the problem description, the data structure used is shown in Figure
124.

Figure 124. Arrays to Store Grade Sheets

Vector Codes Vector Names Array Grades

1 2 3 4
1 101 1 Salazar Carlos 1 3.5 2.5 4.0 3.3

2 102 2 Bolaños Carmen 2 4.2 3.8 4.5 4.2

3 102 3 Bermúdez Margarita 3 2.0 4.5 4.8 3.8

4 104 4 Paz Sebastián 4 2.5 3.5 4.4 3.5

5 105 5 Díaz Juan Carlos 5 3.4 3.5 3.8 3.6

6 106 6 Marroquín Verónica 6 4.0 4.6 3.3 4.0

… … … … … … … … …

33 133 33 Hernández María 33 3.2 4.0 4.6 3.9

34 134 34 Ordóñez Miguel 34 4.5 3.8 3.0 3.8

35 -1 35 35

… -1 … …

Partial
grade 1

Partial
grade 2

Partial
grade 3

Final
grade

In this exercise, a brief description of the requirements that the application to be
designed must meet is given. Up to this point, it is already known what to do; now,
it must be thought about how to do it. The following paragraphs will address that.

This problem is very complex to attempt solving it with a single algorithm; it is ne-
cessary to divide it into modules or subroutines that can be easily designed. How
should the tasks be separated?

One way to do this is based on the tasks the user needs the program to perform,
which are technically known as requirements. These include: entering the students,
which requires a procedure or a function to input these data; after grading the

271

SEARCHING AND SORTING

exams, the professor needs to record the grades, so a procedure is required to enter
grades; another procedure to check a student’s grades, and another to modify them
if necessary; finally, a procedure to generate the lists is also required, and since the
lists are presented in order, a procedure is needed to sort the data in the arrays.
An important point to consider is that the algorithms that have been studied opera-
te on a certain amount of data. In this exercise, the number of students in the course
is unknown. The strategy to solve cases in which the amount of space required is
unknown is to analyze the problem domain and declare the arrays considering the
case where more space is required. In the case of a grade sheet, it is likely that there
are no more than 40 students, but it is possible that, exceptionally, there could be
more than 50. To avoid anyone is left unrecorded, it is better to consider the largest
space required and declare the arrays with that size. So, in this example, space for
65 students is reserved.

Figure 125 presents a diagram with the procedures and functions to be designed to
solve this exercise.

Figure 125. Diagram of Procedures and Functions

272

Algorithm Design

However, since sufficient space is reserved for a very large group, in most cases,
the course will be smaller, and part of the arrays will be empty. This implies that to
ensure the efficiency of the algorithms, the arrays should only be traversed up to
the point where there is data available. The strategy applied in this case is to initia-
lize the vector of codes with -1 in each position so that when entering students this
value is replaced with the student’s code. To know how many records are present, a
function is designed to count the elements with a value different from -1. Table 121
shows the procedure to initialize the code vector, and Table 122 shows the function
to determine the number of registered students.

Table 121. Function to Initialize the Vector

1 initialize()

2 Integer: i

3 For i = 1 to 65 do

4 code[i] = -1

5 End for

6 End initialize

In this procedure, as well as in the function that follows, parameters are not defined,
this indicates that the vector they access is defined as global in the main algorithm.

Table 122. Function to Count Students

1 Integer countstudents()

2 Integer: i=0

3 While code[i+1] != -1 do

4 i = i + 1

5 End while

6 Return i

7 End countstudents

Procedures and functions are designed to implement the application’s require-
ments. Table 123 shows the procedure for registering student names.

Table 123. Function to Register Students

1 registerStudents()

2 Integer: i

3 Character: ans

273

Searching And Sorting

4 i = countStudents()

5 Do

6 i = i + 1

7 Write “Code: “

8 Read code[i]

9 Write “Name: “

10 Read name[i]

11 Write “More students (y/n)? “

12 Read ans

13 While ans = ‘Y’ or ans = ‘y’

14 End registerStudents

In the registerStudents procedure, the function countStudents() is used, which
allows new students to be registered at the end of the list. Table 124 shows the
procedure for recording grades. This procedure receives as a parameter the par-
tial exam to which the grade belongs (first, second, or third), displays the student’s
name, reads the grade, and saves it in the corresponding column.

Once the three grades have been recorded, the final grade is calculated. The proce-
dure for calculating the final grade is presented in Table 125.

Table 124. Procedure to Record Grades

1 registerGrades (Integer: j)

2 Integer: i,n

3 n = countStudents()

4 For i = 1 to n do

5 Write “Code: “, code[i]

6 Write “Name: “, name[i]

7 Write “Grade “, j, “:”

8 Read grades[i][j]

9 End for

10 End registerGrades

Table 125. Procedure to Calculate Final Grade

1 calculateFinalGrade ()

2 Integer: i,n

274

Algorithm Design

3 n = countStudents()

4 For i = 1 to n do

5 Grades[i][4] = (grades[i][1] + grades[i][2] + grades[i][3])/3

6 End for

7 End calculateFinalGrade

Once the data has been entered, three operations can be performed: querying,
modifying, and reporting. For all three operations, it is advisable to have the data
sorted. Before proceeding to write the procedure to query a grade, a procedure to
sort the vectors by student code using the selection method is designed. This will
allow binary search to be applied in the query and modification operations. This is
presented in Table 126.

Table 126. Procedure to Sort Vector Using Selection Method

1 sortByCode()

2
Integer i, j, posMin, aux, n
Real: v[4]
String: name

3 n = countStudents()

4 For i = 1 to n-1 do

5 posMin = i

6 For j = i+1 to n do

7 If code[posMin] > code[j] then

8 posMin = j

9 End if

10 End for

11 aux = code[i]

12 code[i] = code[posMin]

13 code[posMin] = aux

14 name = name[i]

15 name[i] = name[posMin]

16 name[posMin] = name

17 V[1] = grades[i][1]

18 V[2] = grades[i][2]

19 V[3] = grades[i][3]

20 V[4] = grades[i][4]

21 grades[i][1] = grades[posMin][1]

22 grades[i][2] = grades[posMin][2]

23 grades[i][3] = grades[posMin][3]

24 grades[i][4] = grades[posMin][4]

275

Searching And Sorting

25 grades[posMin][1] = v[1]

26 grades[posMin][2] = v[2]

27 grades[posMin][3] = v[3]

28 grades[posMin][4] = v[4]

29 End for

30 End sortByCode

In this algorithm, between lines 11 and 28 data swapping occurs in both vectors and
the matrix. A vector of 4 elements is used to move the row of the matrix.

To query a student’s grades, it is necessary to perform a search based on their code.
Considering that the sorting procedure has already been developed, binary search
can be applied to the code vector. Table 127 shows the algorithm for the binary
search function, adapted to the logic being applied in this exercise. This function re-
turns the position corresponding to the student, allowing access to the other arrays
using the index.

Table 127. Function for Binary Search for Student Code

1 binarySearch(Integer code)

2 Integer inf, sup, center, pos = -1

3 Inf = 1

4 sup = countStudents()

5 sortByCode()

6 While inf <= sup and pos < 0 do

7 center = (inf + sup) / 2

8 If v[center] = code then

9 pos = center

10 Else

11 If code > v[center] then

12 inf = center + 1

13 Else

14 sup = center – 1

15 End if

16 End if

17 End while

18 Return pos

19 End binarySearch

276

Algorithm Design

The binary search algorithm is explained in detail in Section 7.1.2.

Thus, the procedure to query a student’s grades only has to perform three tasks: read
the code, search for it, and access the data. This procedure is shown in Table 128.

Table 128. Procedure to Query Grades

1 query()

2 Integer: code, pos

3 Write “Student code: “

4 Read code

5 pos = binarySearch(code)

6 If pos > 0 then

7 Write “Code:”, code[pos]

8 Write “Name:”, name[pos]

9 Write “Grade 1:”, grades[pos][1]

10 Write “Grade 2:”, grades[pos][2]

11 Write “Grade 3:”, grades[pos][3]

12 Write “Final grade:”, grades[pos][4]

13 Else

14 Write “Code “, code, “not found”

15 End if

16 End query

At times, the teacher will need to change a grade. For this, the “modify” procedure is
provided. This procedure performs the following operations: it reads the student’s
code, searches for it, and if found, displays the data, reads the new value, and saves
it in the corresponding column. The pseudocode for this procedure is shown in Ta-
ble 129.

Table 129. Procedure to Modify Grades

1 modify()

2 Integer: code, pos, option

3 Write “Student code: “

4 Read code

5 pos = binarysearch(cod)

6 If pos > 0 then

7 Write “Code:”, code[pos]

277

Searching And Sorting

8 Write “Name:”, name[pos]

9 Write “Grade 1:”, grades[pos][1]

10 Write “Grade 2:”, grades[pos][2]

11 Write “Grade 3:”, grades[pos][3]

12 Write “Final grade:”, grades[pos][4]

13 Write “Enter the grade to modify (1, 2 or 3): ”

14 Read option

15 According to option do

16 1: read grades[pos][1]

17 2: read grades[pos][2]

18 3: read grades[pos][1]

19 End according

20 Grades[pos][4] = (Grades[pos][1]+ Grades[pos][2]+ Grades[pos][3])/3

21 Else

22 Write “Code “, code, “not found”

23 End if

24 End modify

Next, the subalgorithms to generate the grade report are designed. This report can
be sorted alphabetically by name or in descending order by final grade, with the
purpose of displaying the highest grades first. When sorting the data, it is important
to ensure that the swaps are made across all three arrays. Table 130 presents the
pseudocode for organizing the data alphabetically using the direct swap algorithm.

Table 130. Procedure to Sort Data Alphabetically Using Direct Swap

1 sortByLastName()

2
Integer i, j, aux,n, code
String: name
Real v[4]

3 n = countStudents()

4 For i = 1 to n-1 do

5 For j = i+1 to n do

6 If name[i] > name[j] then

7 code = code[i]

8 code[i] = code[j]

9 code[j] = code

10 name = name[i]

11 name[i] = name[j]

12 name[j] = name

13 V[1] = grades[i][1]

278

Algorithm Design

14 V[2] = grades[i][2]

15 V[3] = grades[i][3]

16 V[4] = grades[i][4]

17 grades[i][1] = grades[j][1]

18 grades[i][2] = grades[j][2]

19 grades[i][3] = grades[j][3]

20 grades[i][4] = grades[j][4]

21 grades[j][1] = v[1]

22 grades[j][2] = v[2]

23 grades[j][3] = v[3]

24 grades[j][4] = v[4]

25 End if

26 End for

27 End for

28 End sortByLastName

To sort the grade sheet by final grade, the Shell sort algorithm is adapted, as shown
in Table 131.

Table 131. Procedure to Sort Data in Descending Order Using Shell Sort Algorithm

1 sortByGrade()
2 Integer: aux, gap, i , j, code, n

Boolean: keepGoing
String: name
Real: v[4]

3 n = countStudents()

4 gap = n/2

5 While gap >= 1 do

6 For j = (1 + gap) to n do

7 i = j – gap

8 code = code[j]

9 name = name[j]

10 V[1] = grades[j][1]

11 V[2] = grades[j][2]

12 V[3] = grades[j][3]

13 V[4] = grades[j][4]

14 keepGoing = true

15 While i > 0 and keepGoing = true do

16 If V[4] < grades[i][4] then

17 code[i + gap] = code[i]

279

Searching And Sorting

18 name[i + gap] = name[i]

19 grades[i + gap][1] = grades[i][1]

20 grades[i + gap][2] = grades[i][2]

21 grades[i + gap][3] = grades[i][3]

22 grades[i + gap][4] = grades[i][4]

23 i = i – gap

24 Else

25 keepGoing = false

26 End if

27 End while

28 code[i + gap] = code

29 name[i + gap] = name

30 grades[i + gap][1] = v[1]

31 grades[i + gap][2] = v[2]

32 grades[i + gap][3] = v[3]

33 grades[i + gap][4] = v[4]

34 End for

35 gap = gap/2

36 End while

37 End sortByGrade

If an ascending order were desired, it would be sufficient to change the less-than
sign to a greater-than sign in line 16.

In the procedure list(), presented in Table 132, the user is prompted to select the
desired order for the list. Then, one of the two previously designed sorting procedu-
res is invoked, and subsequently, the listing is generated.

Table 132. Procedure to List Students and Grades

1 List ()

2 Integer: order, i, n

3 n = countStudents()

4 Write “Generate sorted list by:”

5 Write “1. Name 2. Final Grade”

6 Read order

7 If order = 1 then

8 sortByLastName()

9 Else

10 sortByGrade()

280

Algorithm Design

11 End if

12 Write “Code \t Name \t Grade1 \t Grade2 \t Grade3 \t Final Grade”

13 For i = 1 to n do

13 Write code[i], “\t”, name[i], “\t”, grade[i][1], “\t”, grade[i][2], “\t”,
grade[i][3], “\t”, grade[i][4]

14 End for

15 End list

 Continuing with the solution algorithm to the proposed problem, there are already
several procedures and some functions to carry out specific tasks. Now, a function
that interacts with the user and reports to the main algorithm the task that the user
wants to perform is required. For this purpose, a menu and a function that displays
it and captures the selection are designed. The pseudocode for this is shown in Ta-
ble 133.

Table 133. Menu Function

1 Integer menu()

2 Integer: option

3 Write “Menu”

4 Write “1. Register Students”

5 Write “2. Register Grades”

6 Write “3. Calculate Final Grade”

7 Write “4. Query Student Grades”

8 Write “5. Update Student Grades”

9 Write “6. Print Report”

10 Write “7. Exit”

11 Do

12 Read option

13 While option < 1 or option > 7

14 Return option

15 End menu

Finally, Table 134 presents the main algorithm, which controls the execution of all
the procedures and functions designed previously.

281

Searching And Sorting

Table 134. Main Algorithm

1 Begin

2

Global Integer: code[65]
Integer option, nGrade
Global String: name[65]
Global Real: grades[65][4]

3 Initialize()

4 Do

5 option = menu()

6 According to option do

7 1: registerStudents()

8 2: Write “Which grade would you like to enter? (1, 2 or 3)?”

9 Read nGrade

10 registerGrades(nGrade)

11 3: calculateFinalGrade()

12 4: query()

13 5: modify()

14 6: list()

15 End according

16 While option != 7

17 End main algorithm

Thus concludes this small exercise in designing a program to solve a low-complexity
problem such as managing the grades of a course. However, it has allowed for the
application of all the concepts studied throughout the previous chapters, including
array handling, searching, and sorting data. Therefore, it can be used as a reference
for developing the exercises proposed next.

7.2.10 Proposed Exercises

1. The Interesting Readings library wants to manage its materials through a
computer program and has requested the design of an algorithm for this
purpose. The goal is to store data about books, such as subject, title, publisher,
author, and year. The program should allow for the entry of all books and
enable the addition of new acquisitions as they are made. It should also support
queries based on author, title, or ISBN, as well as generate sorted listings by
author or title.

282

Algorithm Design

2. The company Well-Paid wants an algorithm to process its payroll information.
The aim is to store data in arrays, including employee name, position, base
salary, days worked, deductions, and monthly salary. Tasks to be performed
include data entry, data modification, payroll processing, inquiries, and report
generation.

3. An algorithm that uses matrices to maintain the data of university professors,
including name, address, and phone number, and allows for adding data,
modifying existing entries, listing in alphabetical order, and searching by name.

283

8. RECURSION

The judgment of wise
men reveals the clear

through the obscure, the
large through the small,
the remote through the

near, and the reality
through ppearance.

—Séneca 16

Recursion, also known as recursive processes, is a concept that is especially applied
in mathematics and computer programming, and similarly in numerous everyday si-
tuations. In mathematics, the term inductive definition refers to the many methods
that use recursion. In programming, this concept applies to algorithms during spe-
cification and to functions during implementation (Joyanes, 1999).

The introduction of recursion into programming languages is attributed to Profes-
sor John McCarthy from the Massachusetts Institute of Technology (MIT), who ad-
vocated for its inclusion in the design of Algol 60 and developed the Lisp language,
which introduced recursive data structures along with recursive procedures and
functions (Baase, 2002).

Recursion serves as an alternative to iterative structures. A recursive algorithm per-
forms calculations repeatedly by making consecutive calls to itself. This does not
mean that recursive algorithms are more efficient than iterative ones; in some cases,
programs may even require more time and memory to execute. However, this cost
can be offset by a more intuitive solution that is mathematically grounded in a proof
by induction.

16 [Translation of the original epigraph in Spanish]

284

Algorithm Design

Most current programming languages allow for the implementation of recursive al-
gorithms through procedures or functions. In cases where languages do not support
direct implementation, recursion can be simulated using stack-like data structures.

Recursion is a concept that applies interchangeably to algorithms, procedures,
and programs. However, this book addresses it from the perspective of algorithm
design.

8.1 RECURSION AND ALGORITHM DESIGN

In the field of algorithm design, recursion is defined as the technique of solving a
problem by consecutively invoking the same algorithm with a progressively less
complex problem, until reaching a version with a known solution. For example, con-
sider calculating the factorial of a number.

Example 73. Recursive Function to Calculate the Factorial of a Number

The factorial of a number is defined as the product of all integers from 1 to n, inclu-
sive, and is represented as n!

Thus:

n! = 1 * 2 * 3 * 4 * … * (n-2) * (n - 1) * n

It is also known that the factorial is defined for the case when n = 0, with the result
being 1. In other words, 0! = 1.

From this, we see that to calculate the factorial of 4 (4!), we multiply 4 by the fac-
torial of 3 (3!); to calculate the factorial of 3 (3!), we multiply 3 by the factorial of 2
(2!); to calculate the factorial of 2 (2!), we multiply 2 by the factorial of 1 (1!); and
to calculate the factorial of 1 (1!), we multiply 1 by the factorial of 0. Now, since we
know that the factorial of 0 is 1 (0! = 1), the problem is solved. This exercise will be
fully developed later.

As illustrated in Figure 126, recursion involves writing a function that includes a call
to itself within its lines or statements, using different values for its parameters, pro-
gressively leading to the final solution.

285

RECURSION

Figure 126. Diagram of a Recursive Function

Recursion is another way to execute a part of the code repeatedly without imple-
menting iterative structures such as while, for, or do while.

 8.2 STRUCTURE OF A RECURSIVE FUNCTION

As mentioned, recursion involves implementing functions that call themselves. This
implies that the function must have a structure that allows it to invoke itself and exe-
cute as many times as necessary to solve the problem, while also avoiding more in-
vocations than strictly necessary to prevent an infinite sequence of self-calls. When
a recursive function specifies in its definition when to self-invoke and when to stop
doing so, it is said to be correctly defined (Lipschutz, 1993).

A well-defined recursive function must meet the following two conditions:

1. There must be a base case whose solution is known and does not involve a
recursive call. In the case of using a recursive function to calculate the factorial,
the base case indicates that the factorial of 0 is 1 (0! = 1). That is, if the function
receives 0 as a parameter, it no longer needs to invoke itself again; it simply
returns the corresponding value, in this case, 1.

factorial(n) = ? (requires a recursive call)
factorial(0) = 1 (does not require a call)

286

Algorithm Design

2. Each time the function invokes itself, either directly or indirectly, it must do so
with a value closer to the base case. Since the base case represents a particular
instance of the problem with a known solution, this means that with each call
to the recursive function, the parameters should be approaching the known
solution. Continuing with the factorial function example, since the base case is 0!
= 1, each time the function is invoked, it should use a parameter value closer to 0.

The factorial of a number is the product of that number and the factorial of the
next smaller number, continuing until reaching the factorial of 0, which is constant.
Based on this, it can be stated that the factorial is defined for any positive integer
as follows:

0! = 1

1! = 1 * 1 = 1 1! = 1 * 0!

2! = 2 * 1 = 2 2! = 2 * 1!

3! = 3 * 2 * 1 = 6 3! = 3 * 2!

4! = 4 * 3 * 2 * 1 = 24 4! = 4 * 3!

5! = 5 * 4 * 3 * 2 * 1 = 120 5! = 5 * 4!

Therefore, the solution for the factorial can be expressed as:

a. If n = 0 → n! = 1
b. If n > 0 → n! = n * (n – 1)!

This is the correct definition of a recursive function, where a is the base case, that is,
the known solution, and b is the recursive invocation with an argument closer to the
solution. Expressed in the form of a mathematical function, we have:

Let f(n) be the function to calculate
the factorial of n, then:

The pseudocode for this function is shown in Table 135.

Table 135. Recursive Function to Calculate the Factorial of a Number

1 Integer factorial(Integer n)

2 If n = 0 then

3 Return 1

4 Else

287

Recursion

5 Return (n * factorial(n – 1))

6 End if

7 End factorial

In the definition, the fulfillment of the two conditions discussed in this section is
clearly evident. Lines 2 and 3 examine the fulfillment of the base case criterion, for
which the solution is known (0! = 1).

2. If n = 0 then
3. Return 1

If the base case has not yet been reached, it is necessary to invoke the recursive
function again, but with a smaller value, as shown in lines 4 and 5.

4. Else
5. Return (n * factorial(n – 1))

8.3 EXECUTION OF RECURSIVE FUNCTIONS

The execution of a recursive function requires dynamically allocating enough me-
mory to store its data. For each execution, space is reserved for parameters, local
variables, temporary variables, and the return value of the function. The code runs
from the beginning with the new data. It is important to clarify that the recursive
code is not duplicated in each activation frame. (Schildt, 1993).

The space in which each invocation of a recursive function executes is called an Ac-
tivation Frame (Baase, 2002). This frame not only provides space to store the varia-
bles that the function operates with, but also allocates space for other bookkeeping
needs, such as the return address, which indicates the instruction to execute once it
exits the recursive function. Thus, an activation frame is created in which the func-
tion executes only during a single invocation.

Since the function will be invoked an indeterminate number of times (depending on
the parameter values), and a new activation frame is created for each invocation,
the compiler must allocate a region of memory for the creation of the stack of fra-
mes. This space is referenced by a register called the Frame Pointer, so that while a
function invocation is executing, the locations of local variables, input parameters,
and return values are known.

288

ALGORITHM DESIGN

A manual execution that shows the states of the activation frames is called an Acti-
vation Trace (Baase, 2002) and allows for analyzing the execution time of the func-
tion and understanding how recursion really works in the computer.

Each active invocation has a unique activation frame. A function invocation is active
from the moment it is entered until it is exited, aft er solving the problem passed
as a parameter. All simultaneous active invocations of the recursive function have
distinct activation frames. When exiting a function invocation, its activation frame
is automatically freed so that other invocations can use that space, and execution
resumes at the point where the function was invoked.

To better illustrate these ideas, figure 127 presents the activation trace for the fac-
torial function.

Figure 127. Activation Trace for the Factorial Function

289

RECURSION

Figure 127. (Continued)

290

Algorithm Design

Once the function has found the base case, that is, a case with a non-recursive so-
lution, this frame returns the determined value for that criterion to the caller and
frees the occupied space; in this case, the last frame returns 1 to the previous frame
and disappears. It continues a backward process in which each activation frame
performs its operations using the value returned by the invoked recursive function
and returns the obtained value to the invoking frame.

8.4 WRAPPERS FOR RECURSIVE FUNCTIONS

It is common for recursive functions to focus on finding a value or performing a spe-
cific task, such as calculating a factorial, reversing a string, finding a value in a data
structure, or sorting a list. They often do not handle other tasks that do not require
recursion, such as reading the data to search for, checking the validity of an argu-
ment, or printing results.

In other words, when programming with recursion, you will find some tasks that do
not need recursive handling and can occur before or after the execution of the recur-
sive function. To manage these tasks, wrapper programs, procedures, or functions
are defined.

A wrapper refers to non-recursive procedures that execute before or after the invo-
cation of a recursive function, responsible for preparing the function’s parameters
and processing the results (Baase, 2002).

In the factorial example, a wrapper algorithm is used to read the number that serves
as the function’s argument, invoke the function, and display the result. The pseudo-
code is presented in Table 136.

Table 136. Pseudocode of the Main Program to Calculate the Factorial

1 Begin

2 Integer: num

3 Read num

4 Print “factorial of”, num, “ = “, factorial(num)

5 End algorithm

291

Recursion

8.5 TYPES OF RECURSION

Recursion can manifest in different ways, and based on these, at least four different
types of recursive implementations have been established.

Simple Recursion: This occurs when a function calls itself with a different argument.
An example of this type of recursion is the factorial() function.

This type is characterized by being easily converted into an iterative solution.

Multiple Recursion: The body of a function includes more than one call to the same
function. For example, the function to calculate a Fibonacci series value (explained
in section 8.7).

Nested Recursion: A recursive function is considered nested when one of the para-
meters passed to the function includes a call to itself. An example of nested recur-
sion is the solution to the Ackermann17 problem.

Cross or Indirect Recursion: In this type of recursion, the body of the function does
not call itself but another function, which includes a call to the first. More than two
functions can participate in this type of implementation, also known as recursive
chains. An example is the function for validating a mathematical expression.

8.6 EFFICIENCY OF RECURSION

In general, an iterative version will run more efficiently in terms of time and space
than a recursive version. This is because, in the iterative version, the overhead as-
sociated with entering and exiting a function is avoided. In the recursive version,
it is often necessary to stack and unstack anonymous variables in each activation
record. This is not necessary for an iterative implementation where results are repla-
ced in the same memory spaces.

On the other hand, recursion is the most natural way to solve some types of pro-
blems, such as QuickSort, the Towers of Hanoi, the eight queens problem, conver-

17 Wilhelm Ackermann (March 29, 1896 – December 24, 1962) was a German mathematician who

conceived the doubly recursive function that bears his name as an example of computational theory

and demonstrated that it is not primitive recursive.

292

Algorithm Design

ting prefix to postfix, or tree traversal. Although iterative solutions can be implemen-
ted, the recursive solution arises directly from the problem’s definition.

Choosing between recursive or iterative methods is essentially a conflict between
machine efficiency and programmer efficiency (Langsam, 1997). Considering that
the cost of programming tends to increase while the cost of computation decreases,
it may not be worthwhile for a programmer to spend time and effort developing a
complicated iterative solution for a problem that has a simple recursive solution.
Conversely, it is also not worth implementing recursive solutions for problems that
can be easily solved iteratively. Many examples of recursive solutions in this chapter
are presented for educational purposes rather than for their efficiency.

It is important to note that the extra time and space demand in recursive solutions
primarily comes from creating function activation records and stacking partial re-
sults, and these can often be optimized by reducing the use of local variables. At the
same time, iterative solutions that use stacks can require as much time and space
as recursive ones.

8.7 EXAMPLES OF RECURSIVE SOLUTIONS
Example 74. Recursive Summatory

Design a recursive function to calculate the summation of the first n positive inte-
gers, in the form:

1 + 2 + 3 + 4 + 5 + 6 + … + (n-1) + n

We define the function f(n), where n can be any number greater than or equal to 1
(n >= 1).

It is known that adding 0 to any number leaves it unchanged. Therefore, the sum-
mation of zero is zero. For any other positive integer, the summation is calculated by
adding its own value to the summation of the immediately preceding number. Thus:

f(0) = 0
f(1) = 1 + f(0)
f(2) = 2 + f(1)
f(3) = 3 + f(2)

293

Recursion

f(4) = 4 + f(3)
f(n) = n + f(n-1)

From this, we conclude that:

a. If n = 0 →f(n) =0
b. If n > 0 → f(n) = n + f(n-1)

This establishes a recursive solution where a represents the base case and b the
recursive invocation of the function.

The pseudocode for the summatory function is presented in Table 137.

Table 137. Recursive Function to Calculate the Summation of a Number

1 Integer summatory(integer n)

2 If n = 0 then

3 Return 0

4 Else

5 Return (n + summation(n – 1))

6 End if

7 End summation

Example 75. Recursive Exponentiation

The calculation of a power is defined as solving an operation of the form xn, where
x is an integer or real number known as the base, and n is a non-negative integer
known as the exponent.

The power xn is the product of n times x, in the form:

xn = x * x * x * … * x (n times x)

294

Algorithm Design

According to the properties of exponentiation, any number raised to the power of 0
equals 1, and any number raised to the power of 1 is the same number.

x0 = 1
x1 = x

For this exercise, we extend the first property also to the case of x = 0. Although it is
typically stated that this result is undefined, for the purpose of explaining recursion,
this is irrelevant.
To propose a recursive solution, it is necessary to express xn in terms of a closer
identity: x0 = 1.

We propose the following example:

20 = 1
21 = 2 21 = 2 * 20 = 2
22 = 4 22 = 2 * 21 = 2 * 2 = 4
23 = 8 23 = 2 * 22 = 2 * 4 = 8
24 = 16 24 = 2 * 23 = 2 * 8 = 16
25 = 32 25 = 2 * 24 = 2 * 16 = 32

As seen in the right column, each power can be formulated using the solution of the
previous power, with a smaller exponent.

Consequently:

a. If n = 0 → xn = 1
b. If n > 0 → xn = x * xn-1

Where a is the base case and b is the recursive invocation.

Table 138 presents the pseudocode to recursively calculate any power of any num-
ber.

295

Recursion

Table 138. Recursive Function to Calculate a Power

1 Integer power(integer x, integer n)

2 If(n = 0)

3 Return 1

4 Else

5 Return (x * power(x, n-1))

6 End if

7 End power

In lines 2 and 3, the problem is solved when the base case is encountered; otherwi-
se, a recursive invocation of the function must be made, as per lines 4 and 5.

Example 76. Fibonacci Series

The Fibonacci series has many applications in computer science, mathematics, and
game theory. It was first published in 1202 by an Italian mathematician of the same
name in his book titled Liber Abaci (Brassard, 1997).

Fibonacci posed the problem as follows: suppose a pair of rabbits produces two offs-
pring each month, and each new pair begins reproducing after two months. Thus,
when purchasing a pair of rabbits, in the first and second months there will be one
pair, but by the third month they will reproduce, resulting in two pairs. In the fourth
month, only the first pair reproduces, so the number increases to three pairs; in the
fifth month, the second pair begins reproducing, leading to five pairs, and so on.

If no rabbits die, the number of rabbits each month is given by the sequence: 0, 1,
1, 2, 3, 5, 8, 13, 21, 34, …, which corresponds to the relationship shown in Table 139:

Table 139. Terms of the Fibonacci Series

Month
(n) 0 1 2 3 4 5 6 7 8 9 …

Pairs of rabbits f(n) 0 1 1 2 3 5 8 13 21 34 …

296

Algorithm Design

Its formal representation is:

a. f(0) = 0
b. f(1) = 1
c. f(n) = f(n-1) + f(n-2)

That is, in month 0 there are still no pairs of rabbits; in month 1, the first pair is acqui-
red; in month 2, the same pair is retained, as they have not yet begun to reproduce.
However, starting from month 3, the number of pairs must be calculated conside-
ring the condition that each pair generates a new pair every month, but only starts
reproducing after two months.

Thus, the problem is solved for month 0 and month 1, which are taken as the base
cases (a, b). From the second month onward, the previous months must be taken
into account. This creates a recursive invocation in the form:

 f(n) = f(n-1) + f(n-2) for n >= 2.

In the pseudocode presented in Table 140, it can be seen that each activation defi-
nes two base cases (line 2), and if these have not yet been reached, two new recur-
sive invocations are generated in each activation frame (line 5). Figure 128 illustrates
the tree that forms when calculating the value of the series for the number 4.

Table 140. Recursive Function to Calculate the n-th Term of the Fibonacci Series

1 Integer Fibonacci(integer n)

2 If (n = 0) or (n = 1) then

3 Return n

4 Else

5 Return (Fibonacci(n – 1) + Fibonacci(n – 2))

6 End if

7 End Fibonacci

297

RECURSION

Figure 128. Activation Frames of the Fibonacci Series

Example 77. Greatest Common Divisor

The Greatest Common Divisor (GCD) of two or more numbers is the largest of their
common divisors. There are two methods for finding the GCD of two numbers: the
first method involves breaking each number down into its prime factors, expres-
sing the numbers in exponential form, and then taking the common factors with
the smallest exponent; the product of these factors will be the GCD. The second
method is a recursive search where it is checked if the second number is a divisor of
the first. If it is, then that number is the GCD. If it is not, the second number is divided
by the modulus of the first with respect to the second, and this process continues
with progressively smaller numbers, tending towards 1 as the common divisor for all
numbers. This latter method is known as the Euclidean algorithm.

For example, to find the GCD of 24 and 18 using the Euclidean algorithm, we divide
the first number by the second (24/18 = 1, remainder = 6). If the division is exact, the
GCD is the second number; if not, as in this case, we continue searching for the GCD
between the second number (18) and the remainder (6), and continue this process
until we find the GCD. If the two numbers are prime, the result will eventually reach 1.

If f(a,b) is the function that returns the GCD of a and b, then it can be expressed as:

c = a mod b

a. If c = 0 → f(a,b) = b
b. If c > 0 →f(a,b) = f(b,c)

298

Algorithm Design

The recursive function for calculating the GCD of two numbers using the Euclidean
algorithm is presented in Table 141.

Table 141. Recursive Function to Calculate the GCD

1 Integer gcd(Integer a, Integer b)

2 Integer c

3 c = a Mod b

4 If c = 0 then

5 Return b

6 Else

7 Return gcd(b, c)

8 End if

9 End gcd

Example 78. Recursive Quick Sort Algorithm

This recursive algorithm for sorting arrays or lists is based on the divide-and-con-
quer principle, which, in this case, translates to the idea that it’s easier to sort two
small arrays than one large one. The algorithm involves selecting an element from
the array as a reference, known as the pivot, and partitioning the array into three
parts: the elements less than the pivot, the pivot itself, and the elements greater
than the pivot.

To partition the array, two indices are declared, and two passes are made: one star-
ting from the first element and moving forward, and another starting from the last
element and moving backward. The first index advances until it finds an element
greater than the pivot, while the second index moves backward until it finds an ele-
ment less than the pivot. When the two indices meet, a swap is performed, and the
passes continue. The partitioning stops when the two indices cross. For example,
consider the array shown in Figure 112 and apply the instructions in Table 142.

299

RECURSION

Figure 129. Passes for Partitioning an Array

Table 142. Passes for Partitioning an Array

1 Integer m = 1, n = 11, pivot = v[1]

2 While m <= n do

3 Do

4 m = m + 1

5 While v[m] < pivot

6 Do

7 n = n – 1

8 While v[n] > pivot

9 If m < n then

10 aux = v[m]

11 v[m] = v[n]

12 v[n] = aux

13 End if

14 End while

Aft er executing the instructions in Table 142, the array will appear as shown in Figure 130.

Figure 130. Passes for Partitioning an Array

300

ALGORITHM DESIGN

Aft er moving the elements greater than the pivot to the right side and the lesser ele-
ments to the left , the pivot is swapped with the element indicated by the index that
traverses the array from right to left (n), as illustrated by the arrows in Figure 130.
Aft er this swap, the elements are in the order shown in Figure 131.

Figure 131. Order of the Array aft er the First Partition

Although the divisions are purely formal, we now have three sublists:

left -list = {3, 11, 12, 8, 7}
center-list = {13}
right-list = {17, 22, 15, 20}

As seen in the sublists, the data has moved from one side of the pivot to the other,
but they are not yet sorted. Therefore, the next step in the Quicksort algorithm is to
take each of the sublists and perform the same process, continuing to partition the
generated sublists until their size is reduced to a single element.

Table 143 presents the recursive Quicksort function with the complete algorithm to
sort an array using this method.

Table 143. Recursive Quicksort Function

1 Integer[] Quicksort(integer v[], integer inf, integer sup)

2 Integer: aux, pivot = v[inf], m = inf, n = sup+1

3 While m <= n do

4 Do

5 m = m + 1

6 While v[m] < pivot

7 Do

8 n = n – 1

9 While v[n] > pivot

10 If m < n then

301

Recursion

11 Aux = v[m]

12 v[m] = v[n]

13 v[n] = aux

14 End if

15 End while

16 v[inf] = v[n]

17 v[n] = pivot

18 If inf < sup then

19 v[] = Quicksort(v[], inf, n-1)

20 v[] = Quicksort(v[], n+1,sup)

21 End if

22 Return v[]

23 End Quicksort

The Quicksort function receives an array of integers, in this example, and two va-
lues: inf and sup, which correspond to the positions that define the subset of ele-
ments to be sorted. The first invocation of the function will include the entire array,
sending the index of the first and last element (1 y n) as parameters. However, in
subsequent calls, the number of elements significantly reduces with each invoca-
tion, corresponding to the sublists generated during each partition.

In this version of the function, the first element is taken as the pivot, but this does
not have to be the case; a function can be designed to find an element with a me-
dian value that allows for a balanced partition of the list.

8.8 PROPOSED EXERCISES

Design recursive solutions for the following requirements:

1. Display the numbers from 1 a n

2. Generate the multiplication table for a number

3. Sum the divisors of a number

4. Determine if a number is perfect

302

Algorithm Design

5. Calculate the product of two numbers without using the * operator, considering
that multiplication consists of adding the multiplicand as many times as
indicated by the multiplier.

6. Calculate the Least Common Multiple (LCM) of two numbers.

7. Convert a decimal number to binary

8. Convert a binary number to decimal

9. Determine if a string is a palindrome

10. Display the first n terms of the Fibonacci series

11. Reverse the order of the digits that make up a number

12. Determine if a number is prime.

303

9. THE RUBIK’S CUBE

If I am asleep, or if I am awake,
if I am a dead man dreaming he’s alive,

or a living man dreaming he’s dead.
Our dreams always come true
as long as we have patience...

Julio Flórez
[Translation of the original epigraph in Spanish]

The Rubik’s Cube, commonly referred to as the magic cube, is a mechanical puzzle
designed by Hungarian architect and sculptor Ernő Rubik, patented in 1975 in Hun-
gary. This puzzle was initially used as a teaching tool in some Hungarian schools,
as it was believed that the attention and mental effort required to solve it made for
good mental exercise.

Since its early popularity, players have measured their skills by solving it in the shor-
test amount of time. The first world championship was held in Budapest in 1982.

In 1976, a similar invention to the Rubik’s Cube was patented in Japan by engineer
Teruthos Ishige.

9.1 DESCRIPTION OF THE CUBE

The Rubik’s Cube is a puzzle made up of 26 pieces that move around a mechanical
device located at the center of the cube, which is hidden from the user’s view, as
shown in Figure 132.

Many versions of the Rubik’s Cube have been produced using numbers, letters, sha-
pes, and colors. The most popular version features six colors, one for each face. The
goal is to arrange the pieces so that each face of the cube displays a single color.

304

ALGORITHM DESIGN

Figure 132. Rubik’s Cube

Each of the 26 pieces that make up the cube appears to be a small cube itself; howe-
ver, there are actually three diff erent types: centers, edges, and corners, as shown
in Figure 133.

Figure 133. Pieces of the Rubik’s Cube

Centers have only one face, and the color of this piece serves as the reference point
for solving the cube. These pieces are fixed to the internal device and thus do not
change position; edges have two faces of diff erent colors, while corners have three.

The positioning of the pieces is achieved through successive rotations of the layers
that comprise the cube. To facilitate the understanding of the movements neces-
sary to solve the cube, this document presents the layers illustrated in Figure 134.

Figure 134. Layers of the Rubik’s Cube

305

THE RUBIK'S CUBE

Figure 134. (Continued)

 9.2 ALGORITHMIC SOLUTION

The proposed solution involves solving the cube in the following order:

1. Solve the upper layer
2. Solve the middle layer
3. Solve the down layer

In both the upper and down layers, it is necessary to locate and arrange both the
edges and corners, while in the middle layer, only the edges need to be arranged.
The main diff iculty lies in ensuring that each step does not undo what has been
accomplished in the previous steps. Later in this chapter, detailed algorithms will
be presented to achieve this goal; all that is required is attention, patience, and per-
severance in applying them.

 9.2.1 Preliminary Considerations

Before presenting the sequences that allow for solving the cube, it is essential to
specify how the movements should be executed and the terminology used to des-
cribe them.

Each layer can perform two types of movements: the right and left layers can turn
forward or backward; the upper, down, front, and back layers can turn right or left ,
as indicated in the cubes shown in Figure 135. The center layer does not turn unless
the entire cube is rotated, in which case the pieces will not change position.

306

ALGORITHM DESIGN

Figure 135. Movements of the Rubik’s Cube Layers

Each indicated turn should be made by 90 degrees; that is, a corner will move to the
position of the next one according to the type of turn. When a 180-degree turn is
required, it will be written twice.

The algorithm for solving the cube is presented in a modular format; that is, it con-
sists of several procedures that are called when needed. This facilitates understan-
ding of the sequences, as each one changes the position of one or two pieces.

In the solution presented, the easiest-to-understand and apply sequences are used,
rather than the shortest ones, so that the reader does not become discouraged.
Once confidence in executing the algorithm is gained and the movement of the pie-

307

The Rubik's Cube

ces is understood, some modifications can be introduced to solve the cube with
fewer moves.

To solve the cube, it is necessary to develop a combination of turns of the different
layers that comprise it. Each turn is indicated by stating the name of the layer fo-
llowed by the type of turn to be made. For example:

Up → right: indicates that the upper layer should be turned to the right.
Right → forward: means that the right layer should be turned forward.

9.2.2 Main Algorithm for Solving the Rubik’s Cube
As mentioned on previous pages, the Rubik’s Cube is a puzzle, so solving it is merely
a game, a form of entertainment; however, given the number of pieces and the po-
tential combinations of movements, learning to solve it through trial and error can
take a considerable amount of time, and many people may become discouraged
when they find that every time they try to place one piece in order, the previously
ordered pieces get scrambled.

To facilitate this activity, the necessary sequences of movements for solving the
cube are presented algorithmically. Since the list is extensive, a divide-and-conquer
strategy is applied, and procedures are designed to solve each part of the cube. The
main algorithm is presented in Table 144.

Table 144. Main Algorithm for the Rubik’s Cube

1 Begin

2 Selecting and positioning the reference center

3 Solving the upper layer

4 Solving the middle layer

5 Solving the down layer

6 End of algorithm

Each of the steps in this algorithm is explained and refined in the following sections
of this chapter.

308

Algorithm Design

9.2.3 Selecting and Positioning a Reference Center

To begin solving the cube, the first step is to select a reference color to avoid con-
fusion when the cube rotates and changes position. Since the center pieces do not
change position, they determine the color of each face, and one of them will serve
as a reference throughout the entire process.

Following this logic, the first action is to choose one of the six colors and position the
face with that color facing upward. This way, the upper layer is defined, allowing for
the arrangement of its pieces in the next step.

For example, if white is chosen as the reference color, the layer with the white center
piece is oriented upward. Whenever any of the sub-algorithms for solving any layer
is executed, the central white piece must remain facing up.

The reference center is maintained throughout the entire process of solving the
cube, but before starting any procedure, it is important to pay attention to the color
of the front center to avoid mistakenly changing the cube’s position.

9.2.4 Solving the Upper Layer
This layer is solved in two phases: first, the edges are arranged using the order_
upper_edge() procedure, and then the corners are arranged by invoking the order_
upper_corner() procedure. The main procedure is presented in Table 145.

Table 145. Procedure for Solving the Upper Layer

1 Solve_upper_layer()

2 Integer: edge, corner

3 // Loop to arrange the edges of the upper layer

4 For edge = 1 to 4 do

5 If edge is not ordered then

6 Order_upper_edge()

7 End if

8 Rotate cube to the left

9 End for

10 // Loop to arrange the corners of the upper layer

11 For corner = 1 to 4 do

12 If corner is not ordered then

309

The Rubik's Cube

13 Order_upper_corner()

14 End if

15 Rotate cube to the left

16 End for

17 End Solve_upper_layer

In this procedure, a loop examines each edge of the cube. If an edge is ordered, the
next one is evaluated; if it is not ordered, the designed procedure to order upper
edges is invoked. The same operation is then performed on the corners.

An edge is considered ordered if the color of each of its faces matches the color of
the center piece on the corresponding face of the cube. For example, if the color
of the center piece on the upper face is white and the color of the center piece on
the front face is red, the upper front edge will be ordered if the upper color is white
and the front color is red; otherwise, it is not ordered, and the Order_ upper_edge()
procedure will need to be invoked. A corner is ordered if each of its faces corres-
ponds with the color of the center piece on the respective face; otherwise, the Or-
der_ upper_corner() procedure must be invoked.

Ordering the Edges of the Upper Layer

In this phase of the process, the edges of the upper layer are arranged such that the
colors of each edge correspond with the reference color of the upper center and
with the colors of the centers of each face of the cube according to their position.

The Order_upper_edge() procedure, presented in Table 146, is designed to place
the correct piece in the front-upper position. This involves three fundamental ope-
rations:

1. Find the edge whose colors correspond to the upper center and the front
center;

2. Move the edge from its current position to the front-down position, regardless
of orientation.

3. Move the edge from the front-down position to the front-upper position and
orient it.

310

Algorithm Design

Table 146. Procedure for Ordering Upper Edges

1 Order_upper_edge()

2 Identify the current position of the edge to be ordered

3 // Move edge to the front-down position

4 Depending on the current position do

5 Current position = Back layer: upper edge

6 Back → right

7 Back → right

8 Down → right

9 Down → right

10 Current position = Right layer: back edge

11 Right → forward

12 Down → left

13 Right → back

14 Current position = Right layer: upper edge

15 Right → forward

16 Right → forward

17 Down → left

18 Current position = Right layer: front edge

19 Front → right

20 Current position = Left layer: back edge

21 Left → forward

22 Down → right

23 Left → back

24 Current position = Left layer: upper edge

25 Left → forward

26 Left→forward

27 Down→ right

28 Current position = Left layer: front edge

29 Front →left

30 Current position = Front layer: upper edge

31 Front → right

32 Front → right

33 Current position = Down layer: back edge

34 Down → left

35 Down → left

36 Current position = Down layer: right edge

311

THE RUBIK'S CUBE

37 Down → left

38 Current position = Down layer: left edge

39 Down → right

40 End switch

41 // move the piece from the front-down position to the front-upper
position

42 If front_color of front-down edge = reference color then

43 Down→ right

44 Right → forward

45 Front → left

46 Right → back

47 Else

48 Front →left

49 Front → left

50 End if

51 End order_upper_edge

Executing this procedure will order the upper-front edge. To order all the edges of
the upper layer, it is necessary to execute it four times, as specified in the Solve_
upper_layer() procedure.

Aft er ordering the upper edges, the cube will appear as shown in Figure 136, where
the dark gray part indicates the portion of the cube that has already been ordered.

Figure 136. Upper Layer with Ordered Upper Edges

312

Algorithm Design

Ordering the Corners of the Upper Layer

The corners are formed by three colors corresponding to the colors of the three
faces that converge at that point. If the color of each side of the corner matches
the color of the center piece on the face, then the corner is in the correct position.
Otherwise, it must be moved to its correct corner and oriented according to the
colors of the faces.

The movements indicated in the Order_upper_corner() procedure, presented in Ta-
ble 147, allow for the ordering of the front–upper–right corner. This requires three
actions:

1. Identify the current position of the corner to be ordered;
2. Move the piece to the front–down–right position. For this step, a multiple

decision structure is used, which includes a sequence of movements for
each of the seven alternatives;

3. Move the piece from the front-down–right corner to the front–upper –right
position. In this step, three possibilities are presented depending on the
orientation of the corner, which are evaluated through nested decisions.

Table 147. Procedure for Ordering Upper Corners

1 Order_upper_corner()

2 Identify current_position of the corner

3 // Move piece to the front-down-right position

4 Switch current_position do

5 Current_position = upper layer: back-right corner

6 Right → forward
7 Down → left
8 Down → left
9 Right → back
10 Down → right
11 Current_position = upper layer: back-left corner

12 Left → forward
13 Down → right
14 Down → right
15 Left → back
16 Current_position = upper layer: front-right corner

313

The Rubik's Cube

17 Right → back
18 Down → left
19 Right → forward
20 Down → right
21 Current_position = upper layer: front-left corner

22 Left → back
23 Down → right
24 Left → forward
25 Current_position = down layer: back-right corner

26 Down → left
27 Current_position = down layer: back-left corner

28 Down → right
29 Down → right
30 Current_position = down layer: front-left corner

31 Down → right
32 End switch

33 // Move and orient piece to the upper-front-right position

34 If reference_color = front color of down-right corner then

35 Down → left
36 Right → back
37 Down → right
38 Right → forward

39 Else
40 If reference_color = right color of down-right corner then
41 Down → right
42 Front → right
43 Down → left
44 Front → left
45 Else
46 Right → back
47 Down → right
48 Right → forward
49 Front → right
50 Down → right
51 Down → right
52 Front → left
53 End if
54 End if
55 End order_upper_corner

314

ALGORITHM DESIGN

This procedure is executed four times, as established by the iterative structure of
the Solve_upper_layer() procedure, aft er which the cube will have the first layer or-
dered, as shown in Figure 136.

Figure 137. Ordered Upper Layer

 9.2.5 Solving the Central Layer

Aft er ordering the upper layer, the next step is to arrange the four edges of the cen-
tral layer. It is important to note that there is no point in assembling this face if any
of the pieces of the upper layer are not in their correct positions and orientations.

To order the central layer, the down edge of the central layer is observed to determi-
ne whether it corresponds to the right or left position of the central layer, and then it
is moved accordingly. It is also possible for an edge to be in the central layer but not
in the correct position or orientation; in this case, it is moved to the down layer and
then positioned correctly in the central layer.

The procedure in Table 148 defines a loop for ordering the four edges, within which
a second loop searches the down layer for the edge that corresponds to the left or
right central position of each face.

315

The Rubik's Cube

Table 148. Procedure for Solving the Central Layer

1 Solve_central_layer()

2 Integer: sorted_edges, counter

3 sorted_edges = edges sorted in the central layer

4 // Loop to order the edges of the central layer

5 While sorted_edges < 4 do

6 counter = 1

7 While counter <= 4 do

8 If front color of front-down edge = front-center color and down color
of front-down edge = right-center color then

9 Order_right_central_edge()

10 Else

11 If front color of front-down edge = front center color and down
color of front-down edge = left center color then

12 Order_left_central_edge()

13 End if

14 End if

15 Down → left

16 counter = counter + 1

17 End while

18
If right-front edge is NOT sorted and front color of central-right edge ≠
down-center color and right color of central-right edge ≠ down-center
color then

19 Move_right_central_edge()

20 End if

21 Rotate cube to the left

22 End while

23 End Solve_central_layer

This procedure is designed to identify the edge to be moved, either from the down
layer to the central layer or from the central face to the down layer. Once a piece that
needs to be moved is located, it invokes the procedures Order_left_central_edge(),
Order_right_central_edge() or Move_right_central_edge(), as appropriate for the
position and colors of the edge.

The Order_right_central_edge() procedure is responsible for moving the edge that
occupies the down position of the front layer to the right position of the same layer;
in other words, it moves the edge from the down layer to the central layer. This is
shown in Figure 137, and it is necessary for the front color of the edge to match the
front center color, and the down layer of the edge to be the same color as the center
of the right central. This procedure is shown in Table 149.

316

ALGORITHM DESIGN

Figure 138. Ordering Right Central Edge

The Order_left _ central_edge() procedure, presented in Table 150, performs a simi-
lar task to the previous one, with the diff erence that it moves the down edge to the
left side of the front layer.

Table 149. Procedure for Ordering the Right Central Edge

1 Order_right_central_edge()

2 Down → left

3 Right → back

4 Down → right

5 Right → forward

6 Down → right

7 Front → right

8 Down → left

9 Front → left

10 End procedure

Table 150. Procedure for Ordering the Left Central Edge

1 Order_left _central_edge()

2 Down → right

3 Left → back

4 Down → left

5 Left → forward

6 Down → left

7 Front → left

8 Down → right

317

THE RUBIK'S CUBE

9 Front → right

10 End procedure

The two previous procedures are used to move a piece from the bottom layer to the
central layer. However, sometimes the edges are located in the central layer but in
positions that do not correspond to them, and it is necessary to move them to the
bottom layer. For this purpose, the Move_right_central_edge() procedure is used,
as presented in Table 151.

Table 151. Procedure for Moving the Right Central Edge

1 Move_right_central_edge()

2 Right: back

3 Down: right

4 Right: forward

5 Down: right

6 Front: right

7 Down: left

8 Front: left

9 End Move_right_central_edge

Once this phase is complete, the cube will look as shown in Figure 138.

Figure 139. Cube with the Upper and Central Layers Ordered

 9.2.6 Solving the Down Layer

The down layer must be assembled carefully to avoid disturbing the upper and cen-
tral layers. To facilitate understanding of the procedure and to prevent the sequen-

318

Algorithm Design

ces of movements from becoming excessively lengthy, this layer is ordered in three
steps:

1. Position the down corners
2. Orient the down corners
3. Order the down edges

At the start of this phase, there should be two corners that are positioned, although
not necessarily oriented. To locate them, the down layer is rotated, the colors of the
three faces of the piece are observed, and they are compared with the colors of the
three centers of the faces that converge at that corner. A corner is positioned if it has
the three colors of the faces, but it is only oriented if the color of the corner matches
the center color on each face.

The algorithm in Table 152 presents the algorithm for assembling the down layer.
The first loop will run until all four corners are positioned. Within this, there is a se-
cond nested loop whose purpose is to rotate the down layer until identifying the
two corners that are already positioned. Once they have been found, a procedure
is executed to position the remaining two. In each execution of the procedure, the
corners change position, but that does not guarantee they will reach their correct
position; therefore, after each execution, it is necessary to evaluate the state of the
layer and execute again, as indicated by the repetition structure.

Table 152. Procedure for Assembling the Down Layer

1 Assemble_down_layer()

2 While positioned_corners < 4 do

3 // Identify the two that are already positioned

4 While positioned_corners < 2 do

5 Down → left

6 End while

7 position_down_corners()

8 End while

9 // orient down corners

10 While oriented_corners < 4 do

11 Orient_Down_Corners()

12 End while

13 // Orient down edges

14 While oriented_edges < 4 do

319

THE RUBIK'S CUBE

15 Order_down_edges()

16 End while

17 End procedure

Aft er positioning the corners, the next step is to orient them, ensuring that the colors
of the faces of the corner match the colors of the cube’s centers. This procedure is
also executed until all four corners are oriented. Finally, the edges of the down layer
are positioned and oriented, for which another loop is included in the algorithm.

Positioning Down Corners

At this point, you have identified which two corners are positioned. These may be
adjacent or diagonal with respect to each other, as shown in Figure 139. It is impor-
tant to note whether they are adjacent or diagonal, as in the latter case an additional
movement is required.

The procedure for positioning the down corners is presented in Table 153. As men-
tioned earlier, if, aft er executing it, the four corners are not positioned, the two that
are positioned should be identified, and the procedure executed again.

Figure 140. Position of Down Corners

Table 153. Procedure for Positioning Down Corners

1 Position_down_corners()

2 Integer aux

3 If positioned_corners are consecutive then

4 aux = 1

320

Algorithm Design

5 Place positioned corners in the left front-down and right front-down
positions

6 Else (if they are diagonal)

7 aux = 2

8 Place positioned corners in the right front-down and left back-down
positions

9 End if

10 Right → back

11 Down → left

12 Right → forward

13 Front → right

14 If aux = 1 then

15 Down → right

16 Else

17 Down → right

18 Down → right

19 End if

20 Front → left

21 Right → back

22 Down → right

23 Right → Forward

24 Down → right

25 End algorithm

Orienting down corners

In the previous step, the corner pieces were placed in their correct positions ac-
cording to their colors, but they were not oriented so that the colors on their faces
match the color of each side of the cube.

At this point in the process, when observing the lower corners of the cube, you may
encounter any of the following cases:

1. No corner is oriented
2. Only one is oriented
3. Two are oriented and in adjacent positions
4. Two are oriented and diagonally positioned

In any case, the procedure presented in Table 154 is responsible for orienting the fa-
ces of the corners. This subroutine includes two sequences of moves: one for situa-

321

The Rubik's Cube

tions where none or only one of the corners is oriented, and another for when there
are two oriented corners. If there are oriented corners, you should rotate the cube
until one of the oriented corners is in the down left position, and if there’s a second,
it should be in the right layer. If there are two oriented corners, whether they are
adjacent or diagonal, the sequence of moves remains the same, with the difference
that if they are diagonal, an additional move is required in the down layer.

Table 154. Procedure for Orienting the Down Corners

1 Orient_down_corners()

2 If oriented corners < 2 then

3 If oriented corners = 1 then

4 Place oriented corner in the front down left position

5 End if

6 Right → back

7 Down → left

8 Right → forward

9 Down → left

10 Right → back

11 Down → right

12 Down → right

13 Right → forward

14 Down → right

15 Down → right

Table 154. (Continued)

1 Else (if two corners are oriented)

2 Place one oriented corner in the front down left position and the
other in the right layer

3 Left → forward

4 Upper → right

5 Left → back

6 Front → right

7 Upper → right

8 Front → left

9 If oriented corners are adjacent then

10 Down → right

322

ALGORITHM DESIGN

11 Else

12 Down → right

13 Down → right

14 End if

15 Front → right

16 Upper → left

17 Front → left

18 Left → forward

19 Upper → left

20 Left → back

21 Down → left

22 End if

23 End procedure

It may happen that aft er executing this procedure, the corners are still not oriented;
even though they have rotated, the colors may not correspond to the colors of the
center pieces on each face. This procedure is executed repeatedly until the corners
are sorted, as indicated by the iterative structure of the Assemble_Down_Layer()
procedure. However, it is important to carefully observe the colors of the pieces; a
mistake in executing the moves might cause one of the corners to change position,
in which case it is necessary to re-execute the Position_down_ corners().

Once the down corners are oriented, only the edges of the layer will remain, as
shown in Figure 140.

Figure 141. Cube with Down Corners Sorted

Positioning and Orienting the Down Edges

323

THE RUBIK'S CUBE

If the previous procedures have been executed successfully, only the four edges of
the down layer remain to be sorted. The following cases may occur with their arran-
gement:

1. No edge is in the correct position
2. Only one edge is correctly positioned and oriented
3. Two edges are positioned and oriented

If two edges are positioned and oriented, they can be either adjacent or opposite,
as shown in Figure 141. The sequence of moves to bring them to their final position
depends on this arrangement.

Figure 142. Position of the Last Two Edges to be Sorted

In the case that three edges are sorted and the fourth is positioned but not orien-
ted, it means that the cube was disassembled, and upon reassembly, the piece was
placed upside down, making it unsolvable unless it is assembled correctly. If, while
turning the layers of the cube, one or more pieces accidentally become misaligned,
it is advisable to reassemble the cube by placing the pieces such that each face has
only one color.

The procedure in Table 156 presents the sequence of moves to sort the edges of
the down layer. Three sets of moves are proposed: the first is executed when none
or only one edge is positioned and oriented; the second and third are for when two
edges are positioned and oriented, depending on whether they are in adjacent or
opposite positions.

324

Algorithm Design

Table 155. Procedure for Positioning and Orienting the Down Edges

1 Sort_down_edges()

2 If sorted_edges < 2 then

3 If sorted_edges = 1 then

4 Place sorted edge in the front down position

5 End if

6 Left → forward

7 Right → forward

8 Front → right

9 Left → back

10 Right → back

11 Down → right

12 Down → right

13 Left → forward

14 Right → forward

15 Front → right

16 Left → back

17 Right → back

18 End if

19 If sorted_edges = 2 then

20 If sorted edges are on adjacent faces then

21 Place the unoriented edges in the positions:
 front down and left down

22 Left → forward

23 Down → left

24 Upper → right

25 Back → left

26 Back → left

27 Down → left

28 Down → left

29 Upper → right

30 Upper → right

31 Front → left

32 Down → left

33 Front → right

34 Upper → right

35 Upper → right

36 Down → left

325

The Rubik's Cube

37 Down → left

38 Back → left

39 Back → left

40 Down → right

41 Upper → left

42 Left → back

43 Down → right

44 End if

45 If the oriented edges are on opposite faces, then

46 Place the unoriented edges in the positions:
 front down and back down

47 Down → right

48 Down → right

49 Right → forward

50 Left → forward

51 Front → right

52 Right → forward

53 Left → forward

54 Upper → right

55 Right → forward

56 Left → forward

57 Back → left

58 Back → left

59 Right → back

60 Left → back

61 Upper → right

62 Right → back

63 Left → back

64 Front → right

65 Right → back

66 Left → back

67 End if

68 End if

69 End algorithm

As with the previous procedures, it may happen that the pieces do not sort even if
their positions or orientations change. This is why this procedure is invoked within
a loop, to execute it repeatedly until the goal is achieved. The sequences of moves
for sorting the down layer are longer than the previous ones, and as you develop

326

Algorithm Design

skill in assembling the cube, it is likely that some errors in the routines will occur,
causing the central or upper layer to become unsorted. When this happens, do not
be discouraged; take a break and start again from the step you are on. Your initial
attempts may not reach completion, but if you persist, you will eventually succeed.

If you have successfully assembled it, congratulations! You have shown patience
and dedication. If you can solve the Rubik’s Cube, you can achieve any goal you set
for yourself; many projects, like solving the cube, require more willpower and perse-
verance than intelligence or strength.

327

LIST OF FIGURES

Figure 1. Composition of the Computer 12

Figure 2. Physical Organization of the Computer 13

Figure 3. Software Classification 17

Figure 4. Data Types 26

Figure 5. Symbols Used for Designing Flowcharts 48

Figure 6. Flowchart for the Euclidean Algorithm 51

Figure 7. Sequence Structure in N-S Notation 52

Figure 8. Selective Structure in N-S Notation 53

Figure 9. Multiple Selection Structure in N-S Notation 53

Figure 10. Iterative Structure in N-S Notation 53

Figure 11. Euclidean Algorithm in N-S Notation 54

Figure 12. Flowchart of the Even/Odd Number Algorithm 58

Figure 13. Nassi-Shneiderman Diagram of the Even/Odd Number Algorithm. 58

Figure 14. Data Input Symbols 63

Figure 15. Data Output symbols 64

Figure 16. Flowchart for Adding Two Numbers 66

Figure 17. N-S Diagram for Adding Two Numbers 66

Figure 18. Flowchart to Calculate the Square of a Number 68

Figure 19. N-S Diagram to Calculate the Square of a Number 69

Figure 20. Flowchart to Calculate the Unit Price of a Product 72

Figure 21. N-S Diagram to Calculate the Unit Price of a Product 72

Figure 22. Flowchart to Calculate the Time Dedicated to a Subject 76

Figure 23. Simple Decision in Flowchart Notation 82

Figure 24. Simple Decision in N-S Notation 82

Figure 25. Flowchart for the Absolute Value of a Number 84

Figure 26. N-S Diagram to Calculate the Absolute Value of a Number 84

Figure 27. Double Decision in Flowchart Notation 85

Figure 28. Simple Decision in N-S Diagram Notation 86

Figure 29. Flowchart for Division 87

Figure 30. N-S Diagram for Division 87

328

Algorithms Design

Figure 31. Multiple Decision in Flowchart Notation 89

Figure 32. Multiple Decision in N-S Notation 90

Figure 33. Flowchart for Roman Numerals 91

Figure 34. N-S Diagram for Roman Numerals 9 93

Figure 35. Flowchart for the Day of the Week Algorithm 94

Figure 36. N-S Diagram for the Day of the Week Algorithm 95

Figure 37. Flowchart for Nested Decisions 97

Figure 38. N-S Diagram for Nested Decisions 97

Figure 39. Flowchart for Number Comparison Algorithm 99

Figure 40. N-S Diagram for Number Comparison Algorithm 100

Figure 41. Flowchart for Salary Increase Algorithm 102

Figure 43. Flowchart for Employee Selection 105

Figure 44. N-S Diagram of the Transportation Allowance Algorithm 107

Figure 45. Flowchart of the Oldest Sibling Algorithm 112

Figure 46. N-S Diagram of the Wholesale Discount Algorithm 114

Figure 47. Flowchart for Publishing Company Algorithm 119

Figure 48. Motorcycle Discount 121

Figure 49. Electric Service Billing 128

Figure 50. N-S Diagram of the Calculator Algorithm 129

Figure 51. Representation of the While Loop in a Flowchart (version 1) 135

Figure 52. Representation of the While Loop in a Flowchart (version 2) 136

Figure 53. Representation of the While Loop in a N-S Diagram 136

Figure 54. Flowchart of the Algorithm for Generating Numbers 137

Figure 55. N-S Diagram of the Algorithm for Generating Numbers 138

Figure 56. Flowchart of the Divisor Algorithm 141

Figure 57. N-S Diagram of the Divisor Algorithm 142

Figure 58. Do While Loop in Flowchart 143

Figure 59. Do While Loop in N-S Diagram 143

Figure 60. Flowchart of the Sum of Integers Algorithm 145

Figure 61. N-S Diagram of the Sum of Integers Algorithm 145

Figure 62. Flowchart of the Binary Number Algorithm 148

Figure 63. N-S Diagram of the Binary Number Algorithm 149

Figure 64. For Loop in Flowchart (Version 1) 151

329

Figure 65. For Loop in N-S Diagram (Version 1) 151

Figure 66. For Loop in Flowchart (Version 2) 152

Figure 67. For Loop in N-S Diagram (Version 2) 152

Figure 68. Flowchart of the Sum Algorithm 154

Figure 69. N-S Diagram of the Sum Algorithm 155

Figure 70. Flowchart of the Multiplication Table Algorithm 157

Figure 71. N-S Diagram of the Multiplication Table Algorithm 157

Figure 72. Flowchart of the Digital Clock Algorithm 160

Figure 73. N-S Diagram for the Digital Clock Algorithm 161

Figure 74. Flowchart for Nine Multiplication Tables 163

Figure 75. N-S Diagram for Nine Multiplication Tables 163

Figure 76. Flowchart for Grading Process 169

Figure 77. N-S Diagram for Fibonacci Series 172

Figure 78. Flowchart to Reverse the Digits of a Number 176

Figure 79. N-S Diagram for Perfect Number 178

Figure 80. Flowchart for Prime Number 181

Figure 81. N-S Diagram for Points on a Line 183

Figure 82. Graphical Representation of a Vector 191

Figure 83. Graphical Representation of a Two-Dimensional Array 191

Figure 84. Graphical Representation of a Three-Dimensional Array 192

Figure 85. Graphical Representation of an Age Vector 193

Figure 86. Vector with Data 194

Figure 87. N-S Diagram for Storing Numbers in a Vector 195

Figure 88. N-S Diagram for Input and Output Data from a Vector 196

Figure 89. Graphical Representation of a Vector 196

Figure 90. Graphical Representation of the Numeric Vector 197

Figure 91. Graphical Representation of an Array 199

Figure 92. Graphical Representation of an Array with Data 200

Figure 93. Flowchart for Filling an Array 201

Figure 94. 4*6 Array 202

Figure 95. N-S Diagram to Printing the Contents of an Array 203

Figure 96. Vector with Values from Example 49 205

Figure 97. N-S Diagram for Recurrence of Data in an Array 206

Figure 98. Difference of Vectors 207

330

Algorithms Design

Figure 99. Flowchart for the Vector Difference Algorithm 208

Figure 100. Interleaving Vectors 209

Figure 101. Summation of Rows and Columns of an Array 210

Figure 102. N-S Diagram for Summation of Rows and Columns of an Array 211

Figure 103. Main Diagonal of an Array 213

Figure 104. Flowchart for the Vector Difference Algorithm 213

Figure 105. Arrays for Processing Grades 214

Figure 106. Flowchart of a Function 223

Figure 107. Flowchart of the Simple Interest Function 230

Figure 108. Flowchart for the Simple Interest Algorithm 231

Figure 109. Flowchart for the Leap Year Function 234

Figure 110. N-S Diagram for the Print Vector Procedure 240

Figure 111. Flowchart for the Linear Search Algorithm 244

Figure 112. Student Data Stored in Vectors 245

Figure 113. Flowchart for the Student Search Algorithm 246

Figure 114. Flowchart for the Linear Search Algorithm 248

Figure 115. Number of Lottery Tickets and Sales Location 250

Figure 116. Exchange Algorithm Comparisons of the First Element 254

Figure 118. Bubble Sort Algorithm – Comparisons of the First Traversal 258

Figure 119. Insertion Sort Algorithm – Exchange for the Second Element 261

Figure 120. Shell Sort Algorithm – First Iteration 263

Figure 121. Shell Sort Algorithm – First Iteration 264

Figure 122. Shell Sort Algorithm – First Iteration 265

Figure 123. Merging Sorted Vectors 268

Figure 124. Arrays to Store Grade Sheets 270

Figure 125. Diagram of Procedures and Functions 271

Figure 126. Diagram of a Recursive Function 285

Figure 127. Activation Trace for the Factorial Function 288

Figure 128. Activation Frames of the Fibonacci Series 297

Figure 129. Passes for Partitioning an Array 299

Figure 130. Passes for Partitioning an Array 299

Figure 131. Order of the Array after the First Partition 300

Figure 132. Rubik’s Cube 304

Figure 133. Pieces of the Rubik’s Cube 304

331

Figure 134. Layers of the Rubik’s Cube 304

Figure 135. Movements of the Rubik’s Cube Layers 306

Figure 136. Upper Layer with Ordered Upper Edges 311

Figure 137. Ordered Upper Layer 314

Figure 138. Ordering Right Central Edge 316

Figure 139. Cube with the Upper and Central Layers Ordered 317

Figure 140. Position of Down Corners 319

Figure 141. Cube with Down Corners Sorted 323

Figure 142. Position of the Last Two Edges to be Sorted 323

LIST OF TABLES

Table 1. Storage Magnitudes 15
Table 2. Arithmetic Operators 35
Table 3. Hierarchy of Arithmetic Operators 37
Table 4. Relational Operators 37
Table 5. Logical Operators 38
Table 6. Result of Logical Operations 39
Table 7. Hierarchy of Operators 39
Table 8. First Algorithm for Preparing a Cup of Coffee 44
Table 9. Second Algorithm for Preparing a Cup of Coffee 44
Table 10. Algorithm for Obtaining the GCD 47
Table 11. Euclidean Algorithm in Functional Notation 55
Table 12. Pseudocode for Even/Odd Number Algorithm 57
Table 13. Verification of the Even/Odd Number Algorithm 60
Table 14. Pseudocode for the Algorithm to Add Two Numbers 66
Table 15. Verification of the Algorithm for Adding Two Numbers 67
Table 16. Pseudocode to Calculate the Square of a Number 68
Table 17. Verification of the Algorithm for the Square of a Number 68
Table 18. Pseudocode to Calculate the Unit Price of a Product 71
Table 19. Verification of the Algorithm to Calculate the Unit Price of a Product 72
Table 20. Pseudocode to Calculate the Area and Perimeter of a Rectangle 74

332

Algorithms Design

Table 21. Verification of the Algorithm for Area and Perimeter of a Rectangle 74
Table 22. Verification of the Algorithm for Time Dedicated to a Subject 77
Table 23. Pseudocode to Calculate the Absolute Value of a Number 83
Table 24. Verification of the Algorithm to Calculate Absolute Value 83
Table 25. Pseudocode for Division 86
Table 26. Verification of the Division Algorithm 87
Table 27. Pseudocode to Identify Greater and Lesser Number 88
Table 28. Verification of the Greater and Lesser Number Algorithm 88
Table 29. Pseudocode for Roman Numerals 91
Table 30. Verification of the Roman Numeral Algorithm 93
Table 31. Pseudocode for the Day of the Week Algorithm 94
Table 32. Verification of the Day of the Week Algorithm 95
Table 33. Nested Decisions 96
Table 35. Pseudocode for Number Comparison Algorithm 100
Table 36. Pseudocode for Salary Increase Algorithm 101
Table 37. Verification of the Salary Increase Algorithm 103
Table 38. Verification of the Recruitment Algorithm 105
Table 39. Verification of the Transportation Allowance Algorithm 107
Table 40. Pseudocode for Final Grade Algorithm 110
Table 41. Verification of the Final Grade Algorithm 111
Table 42. Verification of the Oldest Sibling Algorithm 113
Table 43. Verification of the Wholesale Discount Algorithm 114
Table 44. Pseudocode for Term Deposit Algorithm 117
Table 45. Verification of the Term Deposit Algorithm 118
Table 46. Verification of the Publishing Company Algorithm 119
Table 47. Verification of the Motorcycle Discount Algorithm 122
Table 48. Sales Commission Algorithm 124
Table 49. Verification of the Sales Commission Algorithm 125
Table 50. Verification of the Calculator Algorithm 130
Table 51. Pseudocode of the Algorithm for Generating Numbers 137
Table 52. Verification of the Algorithm for Generating Numbers 138
Table 53. Pseudocode for the Divisor Algorithm 140
Table 54. Verification of the Divisor Algorithm 140
Table 55. Pseudocode for the Sum of Integers Algorithm 144
Table 56. Verification of the Sum of Integers Algorithm 146
Table 57. Pseudocode for the Binary Number Algorithm 147
Table 58. Verification of the Binary Number Algorithm 149
Table 59. Pseudocode for the Sum Algorithm 153
Table 60. Verification of the Sum Algorithm 155

333

Table 61. Pseudocode for the Multiplication Table Algorithm 156
Table 62. Verification of the Multiplication Table Algorithm 158
Table 63. Pseudocode for the Digital Clock Algorithm 159
Table 64. Pseudocode for Nine Multiplication Tables 162
Table 65. Pseudocode for Minimum, Maximum, and Average 166
Table 66. Verification of the Algorithm for Minimum, Maximum, and Average 167
Table 67. Verification of the Grading Process Algorithm 170
Table 68. Verification of the Fibonacci Series Algorithm 172
Table 69. Pseudocode for the Greatest Common Divisor Algorithm 174
Table 70. Verification of the Greatest Common Divisor Algorithm 174
Table 71. Verification of the Reverse Digits Algorithm 177
Table 72. Verification of the Perfect Number Algorithm 178
Table 73. Pseudocode for Iterative Exponentiation 179
Table 74. Verification of the Iterative Exponentiation Algorithm 180
Table 75. Verification of the Prime Number Algorithm 182
Table 76. Verification of the Points on a Line Algorithm 183
Table 77. Pseudocode for the Square Root Algorithm 184
Table 78. Verification of the Square Root Algorithm 184
Table 79. Verification of the Square Root Algorithm 198
Table 80. Pseudocode to Find the Largest and Smallest Values in a Vector 204
Table 81. Pseudocode for Interleaving Vectors 209
Table 82. Pseudocode for Processing Grades Using Arrays 215
Table 83. Pseudocode for the Sum Function 224
Table 84. Pseudocode for the Factorial Function 224
Table 85. Pseudocode for the Subtract Function 226
Table 86. Pseudocode for the Multiply Function 226
Table 87. Pseudocode for the Divide Function 226
Table 88. Pseudocode for the Arithmetic Operations Algorithm 227
Table 89. Pseudocode for the Absolute Value Function 228
Table 90. Pseudocode for the Power Function 228
Table 91. Pseudocode for the Main Algorithm for Exponentiation 228
Table 92. Verification of the Power Function 229
Table 93. Verification of the Algorithm to Calculate a Power 229
Table 94. Verification of the Solution for Calculating Simple Interest 232
Table 95. Pseudocode for the Final Grade Function 232
Table 96. Pseudocode for the Triangle Area Function 233
Table 97. Pseudocode for the Character Count Function 235
Table 98. Pseudocode for the Function to Add Days to a Date 236
Table 99. Verification of the Function to Add Days to a Date 237

334

Algorithms Design

Table 100. Procedure for Multiplication Table 240
Table 101. Pseudocode for the Algorithm to Generate Multiplication Tables 240
Table 102. Pseudocode for the Procedure to Write Date 241
Table 103. Pseudocode for the Procedure to Display a Sequence 242
Table 104. Pseudocode for the Algorithm to Check Balance 247
Table 105. Pseudocode for the Binary Search Function 249
Table 106. Pseudocode for the Winning Number Algorithm 251
Table 107. Pseudocode for the Medical Record Algorithm 252
Table 108. Sorting by Swap Locating the First Element 255
Table 109. Function to Sort a Vector sing the Swap Method 256
Table 110. Traversal to Select the i-th Element 257
Table 111. Function to Sort a Vector Using the Selection Method 257
Table 112. Traversal to Bubble Up an Element 259
Table 113. Improved Iteration to Bubbe Up the i-th Element 259
Table 114. Function to Sort a Vector Using the Bubble Sort Method 260
Table 115. Instructions for Inserting the i-th Element Into the Correct Position 261
Table 116. Function to Sort a Vector Using the Insertion Method 262
Table 117. Shell Algorithm – One Iteration 264
Table 118. Function to Sort a Vector Using the Shell Method 265
Table 119. Function to Partition a Vector 267
Table 120. Function to Merge Sorted Vectors 268
Table 121. Function to Initialize the Vector 272
Table 122. Function to Count Students 272
Table 123. Function to Register Students 272
Table 124. Procedure to Record Grades 273
Table 125. Procedure to Calculate Final Grade 273
Table 126. Procedure to Sort Vector Using Selection Method 274
Table 127. Function for Binary Search for Student Code 275
Table 128. Procedure to Query Grades 276
Table 129. Procedure to Modify Grades 276
Table 130. Procedure to Sort Data Alphabetically Using Direct Swap 277
Table 131. Procedure to Sort Data in Descending Order Using Shell Sort Algorithm 278
Table 132. Procedure to List Students and Grades 279
Table 133. Menu Function 280
Table 134. Main Algorithm 281
Table 135. Recursive Function to Calculate the Factorial of a Number 286
Table 136. Pseudocode of the Main Program to Calculate the Factorial 290
Table 137. Recursive Function to Calculate the Summation of a Number 293
Table 138. Recursive Function to Calculate a Power 295

335

Table 139. Terms of the Fibonacci Series 295
Table 140. Recursive Function to Calculate the n-th Term of the Fibonacci Series 296
Table 141. Recursive Function to Calculate the GCD 298
Table 142. Passes for Partitioning an Array 299
Table 143. Recursive Quicksort Function 300
Table 144. Main Algorithm for the Rubik’s Cube 307
Table 145. Procedure for Solving the Upper Layer 308
Table 146. Procedure for Ordering Upper Edges 310
Table 147. Procedure for Ordering Upper Corners 312
Table 148. Procedure for Solving the Central Layer 315
Table 149. Procedure for Ordering the Right Central Edge 316
Table 150. Procedure for Ordering the Left Central Edge 316
Table 151. Procedure for Moving the Right Central Edge 317
Table 152. Procedure for Assembling the Down Layer 318
Table 153. Procedure for Positioning Down Corners 319
Table 154. Procedure for Orienting the Down Corners 321
Table 155. Procedure for Positioning and Orienting the Down Edges 324

LIST OF EXAMPLES

Example 1. Greatest Common Divisor 45

Example 2. Even or Odd Number 56

Example 3. Adding Two Numbers 65

Example 4. The Square of a Number. 67

Example 5. Selling Price of a Product 69

Example 6. Area and Perimeter of a Rectangle 73

Example 7. Time Dedicated to a Subject 75

Example 8. Calculating the Absolute Value of a Number 83

Example 9. Division 86

Example 10. Greater and Lesser Number 87

Example 11. Roman Numerals 90

Example 12. Day of the Week Name 93

336

Algorithms Design

Example 13. Comparing Two Numbers 97

Example 14. Calculate Salary Increase 100

Example 15. Recruitment 103

Example 16. Transportation Allowance 105

Example 17. Final Grade 107

Example 18. Oldest Sibling 111

Example 19. Wholesale Discount 113

Example 20. Term Deposit 115

Example 21. Publishing Company 118

Example 22. Motorcycle Discount 120

Example 23. Sales Commission 121

Example 24. Electric Service Billing 125

Example 25. Calculator 127

Example 26. Generating Numbers 136

Example 27. Divisors of a Number 139

Example 28. Sum of Positive Integers 144

Example 29. Binary Number 146

Example 30. Iterative Sum 153

Example 31. Multiplication Table 156

Example 32. Digital Clock 159

Example 33. Nine Multiplication Tables 161

Example 34. Minimum, Maximum, and Average of n Numbers 164

Example 35. Grading Process 167

Example 36. Fibonacci series 170

Example 37. Greatest Common Divisor 172

Example 38. Reverse Digits 174

Example 39. Perfect Number 177

Example 40. Iterative Exponentiation 179

Example 41. Prime Number 180

Example 42. Points on a Line 182

Example 43. Square Root 183

Example 44. Storing Numbers in a Vector 195

Example 45: Input and Output of Data from a Vector 195

Example 46: Calculate the Average of Numbers in a Vector 197

337

Example 47. Filling in an Array 201

Example 48. Printing the Content of an Array 202

Example 49. Finding the Largest and Smallest Values in a Vector 203

Example 50. Recurrence of a Data Point in an Array 205

Example 51. Difference of Vectors 205

Example 52. Interleaving Vectors 208

Example 53. Summation of Rows and Columns of an Array 210

Example 54. Principal Diagonal of an Array 212

Example 55. Processing Grades Using Arrays 213

Example 54. Sum Function 223

Example 55. Factorial Function 224

Example 56. Arithmetic Operations 225

Example 57. Power Function 227

Example 58. Simple Interest Function 229

Example 59. Final Grade Function 232

Example 60. Triangle Area Function 233

Example 61. Leap Year Function 233

Example 62. Count Characters Function 234

Example 63. Adding Days to a Date 235

Example 64. Multiplication Table Procedure 239

Example 65. Print Vector Procedure 240

Example 66. Write Date Procedure 241

Example 67. Procedure to Display a Sequence 241

Example 68. Search for a Student 245

Example 69. Check Balance 246

Example 70. Winning Number 250

Example 71. Medical Record 252

Example 72. Grade List 269

Example 73. Recursive Function to Calculate the Factorial of a Number 284

Example 74. Recursive Summatory 292

Example 75. Recursive Exponentiation 293

Example 76. Fibonacci Series 295

Example 77. Greatest Common Divisor 297

Example 78. Recursive Quick Sort Algorithm 298

9 786287 786141

